(34.237.124.210) 您好!臺灣時間:2021/03/02 07:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林蘇廣
研究生(外文):Su-Guang Lin
論文名稱:IC封裝導線架剪斷彎曲成形與模具設計分析
論文名稱(外文):Analysis of forming for cutting and bending leadframe of IC package and die design
指導教授:許昭和許昭和引用關係
指導教授(外文):Chao-Ho Hsu
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:模具工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:98
中文關鍵詞:DEFORM-3DIC導線架切腳漏銅
外文關鍵詞:DEFORM-3DICleadframecut footexposed copper
相關次數:
  • 被引用被引用:0
  • 點閱點閱:753
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
本研究係以連續冲壓模,來冲切與彎曲成形之IC封裝的導線架,IC的產品規格為SOP 16L 300mil,導線架材料選用C194,釘架厚度為0.25mm,膠餅材料選用Hitachi Chemical 9200。此產品之原始設計為沒有預彎成形的模具,且冲切、彎曲成形時在外引腳與膠餅接口處容易發生脫離與漏銅現象,故易有不良成品的產生。本研究利用PRO-E與DEFORM有限元素分析軟體,設計出較佳的預彎成型過程再進行金屬成形模擬分析。先利用PRO-E繪出切腳預成形之單、雙冲形態模具,可以明顯看出單冲及雙冲形態和增加分析的準確性,並針對切腳預成形角度和冲頭R角半徑之參數設計,經由模擬試誤法比較不同條件下的引腳接口等效應力、應變、導線架zx方向剪應力、成形負荷分佈的差異,得知最佳單、雙冲預成形設計組合。經由分析結果可知,最佳單冲30°、雙冲35°預成形之彎曲成形引腳接口最大等效應力較原始單、雙冲成形減少了97 Mpa、60 Mpa、大約22.66 %、16.48 %,最大等效應變減少了0.064 mm/mm、0.00962 mm/mm、大約為20.8%、53.4 %、導線架上方之ZX方向剪應力減少了18.3 Mpa、4.7 Mpa、減少大約為25.1%、11.13 %。最佳單冲30°、雙冲35°預成形過程的總負荷較原始雙冲成形過程的總負荷減少了67 N、256 N、大約為6.4%、21.7 %。藉由預成形的方式,有效降低成形負荷,並降低引腳接口最大等效應力、應變、導線架與膠餅之間ZX方向剪應力使在成形過程中減少不良成品的現象產生,提高產品整體完善的產品設計。
A study, the IC leadframe was punched and bended by a continuous stamping die. The specifications of the IC product is Sop 16L 300mil. The leadframe material is selected from C194, and the thickness is about 0.25mm. In addition, the molding material is selected from Hitachi Chemical 9200. This product's original design with no pre-bending shape of the mold, and punching, bending and forming prone to nail from the frame and colloidal phenomena, lead to a bad production of finished products. In this study, we design a better process of the pre- forming and proceed to simulate the metal forming by using PRO-E and the DEFORM finite element analysis software. Firstly, the cut foot pre-forming mold and Single impulse and Double impulse shapes can be observed clearly and the accuracy of the analysis is increased is drawn by PRO-E. The head pre-forming punch foot angle and R angle are set as the design parameter. The head pre-forming punch foot angle and R angle are set as the design parameter. Through the analysis of results, best single rushed 30 °, dual-flush 35 ° pre-forming of bending pin interface maximum equivalent stress than the original single and double blanking is reduced by 97 Mpa, 60 Mpa, approximately 22.66 %, 16.48 %, Max equivalent of 0.064 mm/mm, 0.00962 mm/mm, about 20.8 % and 53.4 % of the maximum ratings, even briefly lead over the ZX direction shear stress reduced 18.3 Mpa, 4.7 Mpa, reduction of approximately 25.1 %, 11.13 %. The best single impulse -30 °, dual- impulse 35 ° preform process the total load is the original double-forming process reduces the overall load of 67 N, 256 N, about 6.4 %, 21.7 %. By way of preformed, effectively reducing forming load and reduce pin interface maximum equivalent stress, strain, leadframe and EMC ZX direction shear stress between the forming process in reducing adverse phenomena of finished products, improved product design.
目錄
摘要 i
Abstract ii
誌謝 iv
目錄 v
表目錄 viii
圖目錄 ix
符號說明 xii
第一章 緒論 1
1-1前言 1
1-2文獻回顧 2
1-3研究目的與動機 6
1-4本文研究範疇 7
2-3 銅導線架與膠餅之概述 18
2-3-1 銅導線架基本性質 18
2-3-2 膠餅的基本性質 19
第三章 基本理論 20
3-1 金屬成形基本理論 20
3-1-1塑性加工在工業上之地位及應用 21
3-1-2塑性加工法之分類 21
3-1-3塑性理論之基本假設 22
3-2衝壓加工原理 23
3-2-1 衝切加工原理 23
3-2-2 衝壓成型加工原理 25
3-2-3 衝壓力之計算 26
3-3 彎曲成形的原理 27
3-3-1 彎曲的過程 28
3-3-2 彎曲變形的應力與應變 28
第四章 有限元素基本理論與DEFORM介紹 30
4-1 有限元素法簡介 30
4-2 DEFORM金屬成形分析軟體介紹 31
4-2-1 DEFORM軟體架構介紹 31
4-2-2 DEFORM的解析模式[37]: 35
4-2-3 DEFORM系統提供的材料模式 35
4-2-4 DEFORM的摩擦環境條件 35
第五章 研究製程規劃 37
5-1 設計流程 37
5-2 IC封裝導線架之切腳、彎腳成形設計 39
5-2-1 IC封裝導線架成品尺寸 40
5-2-2各成形方案設計 41
5-2-3 DEFORM-3D環境參數設定 44
5-2-4 C194銅導線架的應力應變圖 45
第六章 結果與討論 46
6-1模擬分析與結果 46
6-1-1 原始(左)-單衝切腳成形模擬分析 46
6-1-2 原始(右)-單冲切腳成形模擬分析 50
6-1-3 原始雙冲切腳成形分析 53
6-2 最佳(左-右)單冲切腳預成形角度設計分析 57
6-2-1 最佳單冲切腳衝頭R角半徑成形分析 61
6-2-2 最佳雙單冲切腳預成形角度分析 64
6-2-3 最佳雙冲切腳衝頭R角半徑成形分析 67
6-3最佳(左)-單冲預成形設計 71
6-3-1 最佳(右)-單冲預成形設計 74
6-3-2 最佳雙冲預成形設計 78
6-4原始單、雙冲切腳成形與最佳單、雙冲預成形設計之比較 82
6-4-1 彎曲成形模擬分析 88
6-4-2 原始單、雙冲彎曲成形模擬分析與最佳單、雙冲設計之比較 90
第七章 結論與建議 93
7-1 結論 93
7-2 建議 95
參考文獻 96
參考文獻
[1] T. Jimma, F. Sekine, K. Sekiya, S.I.Shouzui,W. Morimoto, J. JSTP 28 (1987)
355–362.
[2] T. Jimma, F. Sekine, K. Sekiya, S.I. Shouzui, W. Morimoto, Research on precision
blanking of electronic machine parts, J. JSTP 28 (1987) 355–362.
[3] Darvin R. Edwards, K. Gail Heinen, Steven K.Groothuis, Jesus E. Martinez, “Shear Stress Evaluation of Plastic Package,” IEEE Transactions on Components, Hybrids and Manufacturing Technology, vol. 12, no. 4, pp. 618-627(1987)
[4] S.K. Cheon, C.H. Han, A study on the precision improvement of leadframe in blanking process, J. Korean Soc. Precision Eng. (Spring Conference) (1999) 1027–1030.
[5] 何鴻全,IC 8L TSSOP導線架成型殘餘應力和回彈研究,義守大學,碩士論文,2004。
[6] Hsiang-Chen Hsu, Ming-Je Lin, Yu-Teng Hsu, Hung-Chun Ho, “A Study on Residual Stress Distribution and Spring Back Induced by Forming Process for NiPdAu Pre-Plating Frame,” Proceedungs of AMPT 2006, July 30-Aug 3, 2006, Las Vegas, USA
[7] B. H. Moon, H. Y. Yoo, K. Sawada, “Optimal oxidation control for enhancement of copper lead frame EMC adhesion in packaging process,” Electronic Component and Technology Conference pp. 1148-1153, 1998
[8] E. Takano, T. Mino, K. Takahashi, K. Sawada, S.Y. Shimizu, H. Y. Yoo, “The Oxidation Control of Copper Lead frame Package for Prevention of Popcorn Cracking,” Electronic Components and Technology Conference, pp. 78-83, 1997
[9] 史金益,本導體晶片封裝導線架脫層之研究,國立成功大學,碩士論文,2004。
[10] Wang N. M., Tang S. C.,“Analysis of Bending Effects in Sheet Forming Operations”, Int. J. Num. Mech. Eng., Vol. 25, pp.253-267, 1988
[11] E. Taupin, J. Breitling, W.T. Wu, T. Altan, Material fracture and burr formation in blanking results of FEM simulations and comparison with experiments, J. Mater. Process. Technol. 59 (1996) 68–78.
[12] H. Livatyali, H.C. Wu, T. Altan, Prediction and elimination of springback in straight flanging using computer aided design methods – Part 1. Experimental investingations, Journal of Materials Processing Technology, vol.117, pp. 262-268, 2001
[13] H. Livatyali, H.C. Wu, T. Altan, Prediction and elimination of springback in straight flanging using computer aided design methods – Part 2: FEM predictions and tool design, Journal of Materials Processing Technology, vol.120, pp. 348-354, 2002
[14] J.R. Cho, S.J. Moon, S.S. Kang, Finite element investigation on spring-back characteristics in heet metal U-bending process, Journal of Materials Processing Technology, vol. 141, pp.109-116, 2003.
[15] S.W.L , D.Y.Yang, “An assessment of numerical parameters influencing springback in explicit finite element analysis of sheet metal forming process, ” Journal of Material Processing Technology, vol.80-81, pp. 60-67, 1998
[16] M. Samuel, “Experimental and numerical prediction of springback and side wall curl in U-bendings of anisotropic sheet metals,”J. of Material Processing Technology, vol. 105, pp.382-393
[17] Hambli R., “Prediction of burr heught formation in blanking processes using neural network,International Journal of Mechanical Sciences 44 (2002) 2089-2102
[18] Hatanaka, N., K. Yamaguchi and N. Takakura, “Finite element simulation of the shearing mechanism in the blanking of sheet metal, ”Journal of Materials Processing Technology 139 (2003) 64-70
[19] Shim,K. H. S. K. Lee, B. S. Kang and S. M. Hwang, “Investigation on banling of thin sheet metal using the ductile fracture criterion and its experimental verification”, Journal of Materials Processing Technology, 155-156, 1935-1942, 2004.
[20] 林明宏,微衝剪枝成形模擬與剪斷面品質之研究,國立高雄應用科技大學,碩士論文,2007。
[21] Taupin E., Breitling J., Wu W.T., Altan T., “Material fracture and burr formation in blanking results of FEM simulations and comparison with experiments, ” Journal of Materials Processing Technology, vol,59, pp.68-78.
[22] Fang G., P. Zeng and L. Lou, “Finite element simulation of the effect of clearance on the forming quality in the blanking process,” Journal of Materials Processing Technology, 122 (2002) 249-254
[23] Hambli, R. and M. Reszka, “Fracture criteria identification using an inverse technique method and blanling experiment, ”International Journal of Mechanical Sciences 44 (2002) 1349-1361
[24] Francavilla A. and Zienkiewicz O.C.,“A Note on Numerical Computation of Elastic Contact Problem”, Int. J. Num. Mech. Eng, ” Vol. 9, pp.913-924, 1975。
[25] Johnson G. R.,“Dynamic Response of Axisymmetric Solids Subjected to Impact and Spin”, AIAA Journal, Vol. 17, No.9, pp.975-979, 1979。
[26] 林昇立,塑性加工學,高立出版社,1992。
[27] 林文樹,塑性加工學,三民書局,1987。
[28] 李榮顯,塑性加工學,三民書局,1986。
[29] 陳狄成,應用有限元素法於缺陷板材壓延加工之解析,國立中山大學機械與機電工程學系,2003。
[30] 林文景,『沖壓概論』,正文書局。
[31] 薛福男,『塑性加工學』,全華科技圖書股份有限公司。
[32] 戴宜傑,冲壓加工與冲模設計,新陸書局股份有限公司,1999。
[33] 沖壓模具設計手冊-科技專案成果,金屬工業研究發展中心。
[34] 陳鶴崢,錢友榮,"塑性加工學",文京圖書公司,1998
[35] 林昇立,"塑性加工學",新科技圖書公司,1996。
[36] 許燕忠,孔型壓延加工之有限元素解析,國立中山大學機械工程學系研究所,1999。
[37] 成清吉,圓柱旋轉壓縮成形理論,國立高應第一科技大學機械與自動化工程系,2003。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔