(3.238.7.202) 您好!臺灣時間:2021/03/04 21:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林欣永
研究生(外文):Shin-Yung Lin
論文名稱:不良品可抵用良品之產品,在價格折扣與允許缺貨下的EOQ模型
論文名稱(外文):EOQ models for the product whose defectives can be used as non-defectives under a one-time-only price discount and a shortage
指導教授:于鴻福于鴻福引用關係
指導教授(外文):Hong-Fwu Yu
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:商務經營研究所
學門:商業及管理學門
學類:一般商業學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:76
中文關鍵詞:不完美品質一次價格折扣缺貨
外文關鍵詞:imperfect qualityone-time-only price discountshortage
相關次數:
  • 被引用被引用:0
  • 點閱點閱:657
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在現有考慮不完美品質的經濟訂購批量(economic order quantity; EOQ)模型中,有將不良品假設為廢品出售,有的假設不良品可重加工成良品出售;而有些則假設不良品是次級品,而於進貨檢驗完畢後,以較低的價格ㄧ整批賣出。實際上,對於某些產品,在清理與丟棄不良品中損壞的部分後,所剩下的部分可抵用成良品,很自然地,這將影響剩餘良品的消費。本文之目的,是要針對不良品可抵用良品之產品,考慮供應商於某一時點會給予價格折扣與允許缺貨的條件下,建構最適EOQ模型。首先,針對供應商於某一時點會給予價格折扣的模型,本文依折扣時間之不同,考慮四種不同情境,以最大化折扣時零售商採取與不採取特殊採購之成本差額為目標,決定零售商於價格折扣時之最適訂貨策略;其次則是在考慮允許缺貨的條件下,以最小化年總成本為目標,決定零售商每週期之最適訂購量與最適允許缺貨量。本文並提供數值範例來說明此兩種存貨模型。
Among the existing EOQ models with imperfect quality, some assume that defectives can be treated as scrap items to sell, some assume that defectives can be reworked into non-defectives, while the others assume that defectives are second-class products and can be sold in a single batch at a lower price after the end of the inspection process. In practice, for some products, after getting rid of the bad portion of the defectives, part of each defective can be utilized as non-defectives. Naturally, this will affect the consumption of the remaining non-defectives. The main purpose of this paper is to investigate an EOQ models for each products under the condition that the supplier will give a one-time-only price discount and allowed shortage, where the defectives are screened out by a 100% inspection process and then can be sold in a single batch by the end of the inspection process. Moreover, we assume that a portion of defectives can be utilized as non-defectives and hence will reduce the consumption of the remaining non-defectives. Naturally, this will reduce the consumption of the remaining non-defectives. The optimal order policies associated with four kinds of effective times of the reduced price are obtained. As to the inventory models with shortage backordering, the present paper determines the optimal order quantity and the optimal backorder quantity per cycle of a retailer by minimizing the total cost per year as a goal. Finally, two numerical examples are provided to illustrate these two EOQ models.
摘要………………………………………………………………………………………i
ABSTRACT…………………………………………………………………………….ii
誌謝……………………………………………………………………………………..iii
表目錄………………………………………………………………………………......vi
圖目錄……………………………………………………………………………...…..vii
第一章 緒論………………………………………………………………….….….1
1.1 研究背景與動機…………………………………………………….….…1
1.2 研究目的………………………………………………………………..…5
1.3 本文架構…………………………………………………………..………5
第二章 不良品可抵用良品的EOQ模型…………………………………………7
2.1 符號與基本假設…………………………………………………………..7
2.2 模型推導…………………………………………………………………..9
2.3 小結………………………………………………………………………14
第三章 價格折扣下之經濟訂購批量…………………………………………….15
3.1 符號與基本假設…………………………………………………………15
3.2 模型推導…………………………………………………………………16
3.2.1 情境1(S1)的EOQ模型…………………………………………18
3.2.2 情境2(S2)的EOQ模型…………………………………………24
3.2.3 情境3(S3)的EOQ模型…………………………………………36
3.2.4 情境4(S4)的EOQ模型…………………………………………47
3.3 數值範例……………………………………………………………………55

第四章 允許缺貨下之經濟訂購批量…………………………………………….58
4.1 符號與基本假設…………………………………………………………58
4.2 模型推導…………………………………………………………………58
4.3 數值範例…………………………………………………………………69
第五章 結論與未來研究方向…………………………………………………….70
5.1 結論………………………………………………………………………70
5.2 未來研究方向……………………………………………………………71
參考文獻……………………………………………………………………………….73
1. 林清河,1995,物料管理,修訂版,華泰書局,台北市。

2. Ardalan, A., 1988, “Optimal ordering policies in response to a sale”, IIE Transactions, 20, pp. 292–294.

3. Aucamp, D.C. and Kuzdrall, P.J., 1986, “Lot sizes for one-time-only sales”, Journal
of Operational Research Society, 37(1), pp. 79–86.

4. Baker, R.C., 1976, “Inventory policy for items on sale during regular replacement”, Production & Inventory Management, 17, pp. 55–64.

5. Brill, H. and Chaouch, B.A., 1995, “An EOQ model with random variations in demand”, Management Science, 41(5), pp. 927–936.

6. Cardenas-Barron, L.E., 2000, “Observation on: Economic production quantity model for items with imperfect quality”, International Journal of Production Economics, 67, pp. 201.

7. Chan, W.M. Ibrahim, R.N. and Lochert, P.B., 2003. “A new EPQ model: integrating lower pricing rework and reject situations”, Production Planning Control, 14, pp. 588–595.

8. Chang, H.C., 2004, “An application of fuzzy sets theory to the EOQ model with imperfect quality items”, Computers & Operations Research, 31, pp. 2079–2092.

9. Dye, C.Y., 2007, “Joint pricing and ordering policy for a deteriorating inventory with partial backlogging”, Omega, 35, pp. 184–189.
10. Erel, E., 1992, “The effect of continuous price change in the EOQ”, Omega, 20, pp. 523–527.

11. Eroglu, A. and Ozdemir, A., 2007, “An economic order quantity model with defective items and shortages”, International Journal of Production Economics, 106, pp. 544–549.

12. Goyal, S.K. and Cardenas-Barron, L.E., 2002, “Note on: economic production quantity model for items with imperfect quality—a practical approach”, International Journal of Production Economics, 77, pp. 85–87.

13. Goyal, S.K., 1990, “Economic ordering policy during special discount periods for dynamic inventory problems under certainty”, Engineering Costs and Production Economics, 20, pp. 101–104.

14. Goyal, S.K. Srinivasan, G. and Arcelus, F.J., 1991, “One time only incentives and inventory policies”, European Journal of Operational Research, 54, pp. 1–6.

15. Hsu, W.K.K. and Yu, H.F., 2009, “EOQ model for imperfective items under a one-time-only discount”, Omega, 37, pp.1018-1026.

16. Khouja, M. and Park, S., 2003, “Optimal lot sizing under continuous price decrease”, Omega, 31, pp. 539–545.

17. Maddah, B. and Jaber, M.Y., 2008, “Economic order quantity model for items with imperfect quality: revisited”, International Journal of Production Economics, 112, pp. 808–815.

18. Min, K. and Chen, C.K., 1995, “A competitive inventory model with options to reduce setup and inventory holding costs”, Computers and Operations Research, 22(5), pp. 503–514.
19. Papachristos, S. and Konstantaras, I., 2006, “Economic ordering quantity models for items with imperfect quality”, International Journal of Production Economics, 100, pp. 148–154.

20. Pentico, D.W. Drake M.J. and Toews, C., 2009, “The deterministic EPQ with partial backordering: a new approach”, Omega, 37, pp. 624–636.

21. Porteus, E.L., 1986, “Optimal lot sizing, process quality improvement and setup cost reduction”, Operations Research, 34, pp. 137–144.

22. Rosenbalatt, M.J. and Lee, H.L., 1986, “Economic production cycles with imperfect production process”, IIE Transactions, 18, pp. 48–55.

23. Salameh, M.K. and Jaber, M.Y., 2000, “Economic production quantity model for items with imperfect quality”, International Journal of Production Economics, 64, pp. 59–64.

24. Sana, S.S. Goyal, S.K. and Chaudhuri, K., 2007, “An imperfect production process in a volume flexible inventory model”, International Journal of Production Economics, 105, pp. 548–559.

25. Sarker, B.R. and Kindi, M.A., 2006, “Optimal ordering policies in response to a discount offer”, International Journal of Production Economics, 100, pp. 195–211.

26. Tersine, R. and Barman, S., 1991, “Lot size optimization with quantity and freight rate discounts”, Logistics and Transportation Review, 27(4), pp. 319–332.

27. Wang, J. Li, S. and Cheng, T.C.E., 2008, “Analysis of postponement strategy by EPQ-based models with planned backorders”, Omega, 36, pp. 777–788.

28. Wee, H.M. Yu, J.C.P. and Wang, K.J., 2006, “An integrated production-inventory model for deteriorating items with imperfect quality and shortage backordering considerations”. Lecture Notes in Computer Science, 3982, Part 3: 885–97.

29. Wee, H.M. Yu, F. and Chen, M.C., 2007, “Optimal inventory model for items with imperfect quality and shortage backordering”, Omega, 35, pp. 7–11.

30. Yanasse, H.H., 1990, “EOQ syatems: the case of an increase in purchase cost”, Jurnal of Operational Research Society, 41(7), pp. 633–637.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔