[1] I. D. Abella and C. H. Townes, “Mode characteristics and coherence in optical ruby masers,” Nature 192, 957 (1961).
[2] T. P. Hughes, and K. M. Young, “Mode sequences in ruby laser emission,” Nature 196, 332 (1962).
[3] M. S. Lipsett, and L. Mandel, “Quasi-continuous output from a ruby optical maser,” Nature 196, 547 (1963).
[4] P. Hu, “Stimulated emission of 20-cm-1 phonons in ruby,” Physical Review Letters 44, 417 (1980).
[5] P. E. Jessop and A. Szabo, “Resonant optical energy transfer in ruby,” Physical Review Letters 45, 1712 (1980).
[6] J. C. Walling, O. G. Jenssen, H. P. Jenssen, R. C. Mirris, and E. W. O’Dell, “Tunable alexandrite lasers,” IEEE Journal Quantum Electronics QE-16, 1702 (1980).
[7] P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” Journal of the Optical Society of America B: Optical Physics 3, 125 (1986).
[8] I. T. Sorokina, S. Naumov, E. Sorokin, E. Wintner, and A. V. Shestakov, “Directly diode-pumped tunable continuous-wave room-temperature Cr4+:YAG laser,” Optics Letters 24, 1578 (1999).
[9] A. Sennaroglu, C. R. Pollock, and H. Nathel, “Continuous-wave self-mode-locked operation of a femtosecond Cr4+:YAG laser,” Optics Letters 19, 390 (1994).
[10] C. Y. Lo, K. Y. Huang, J. C. Chen, C. Y. Chuang, C. C. Lai, S. L. Huang, Y. S. Lin, and P. S. Yeh, “Double-clad Cr4+:YAG crystal fiber amplifier,” Optics Letters 30, 129 (2005).
[11] C. Y. Lo, K. Y. Huang, J. C. Chen, S. Y. Tu, and S. L. Huang, “Glass-clad Cr4+:YAG crystal fiber for the generation of superwideband amplified spontaneous emission,” Optics Letters 29, 439 (2004).
[12] M. M. Fejer, J. L. Nightingale, G. A. Magel, and R. L. Byer, “Laser-heated-miniature pedestal growth apparatus for single-crystal fibers,” Optics Letters 11, 437 (1986).
[13] D. B. Gasson and B. Cockayne, “Oxide crystal growth using gas lasers,” Journal of Materials Science 5, 100 (1970).
[14] J. Stone and C. A. Burrus, “Self-contained LED-pumped single crystal Nd:YAG fiber laser,” Fiber and Integrated Optics 2, 19 (1979).
[15] D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “165-W cryogenically cooled Yb:YAG laser”, Optics Letters 29, 2154 (2004).
[16] N. B. Angert, N. I. Borodin, V. M. Garmash, V. A. Zhitnyuk, A. G. Okhrimchuk, O. G. Siyuchenko, and A. V. Shestakov, “Lasing due to impurity color centers in yttrium aluminum garnet crystals at wavelengths in the range 1.35-1.45 μm,” Soviet Journal of Quantum Electronics 18, 73 (1988).
[17] P. M. W. French, N. H. Rizvi, and J. R. Taylor, “Continuous-wave mode-locked Cr4+:YAG laser,” Optics Letters 18, 39 (1993).
[18] A. Sennaroglu and C. R. Pollock, “Continuous-wave self-mode-locked operation of a femtosecond Cr4+:YAG laser,” Optics Letters 19, 390 (1994).
[19] A. Sennaroglu and C. R. Pollock, “Efficient continuous-wave chromium-doped YAG laser,” Journal of the Optical Society of America B 12, 930 (1995).
[20] S. Ishibashi, K. Naganuma, and I. Yokohama, “Cr, Ca:Y3Al5O12 laser crystal grown by the laser heated pedestal growth method,” Journal of Crystal Growth 183, 614 (1998).
[21] I. T. Sorokina, S. Naumov, E. Sorokin, and E. Wintnter, “ Directly diode-pumped tunable continuous-wave room-temperature Cr4+:YAG laser,” Optics Letters 24, 1578 (1999).
[22] D. J. Ripin, C. Chudobs, J. T. Gopinath, J. G. Fujimoto, and E. P. Ippen, “Generation of 20-fs pulses by a prismless Cr4+:YAG laser,” Optics Letters 27, 61 (2002).
[23] S. Ishibashi and K. Naganuma, “Diode pumped Cr4+:YAG single crystal fiber laser,” Advanced Solid-State Lasers, OSA Technical Digest, Davos, Switzerland, 103 (2000).
[24] 林志威,摻鉻釔鋁石榴石雙纖衣晶體光纖雷射,國立中山大學,碩士論文 (2008)。[25] I. T. Sorokina, S. Naumov, E. Sorokin, and A. G. Okhrimchuk, “The mechanisms of slow bleaching in YAG:Cr4+ under CW pumping,” Proceedings on SPIE 4350, 99 (2001).
[26] H. Eilers, W. M. Dennis, W. M. Yen, S. Kück, K. Peterman, G. Huber, and W. Jia, “Performance of a Cr:YAG Laser,” IEEE Journal Quantum Electronics 29, 2508 (1993)
[27] S. A. Markgraf, M. F. Pangborn, and R. Dieckmann, “Influence of different divalent co-dopants on the Cr4+ content of Cr-doped Y3Al5O12,” Journal of Crystal Growth 180, 81 (1997).
[28] B. M. Tissue, W. Jia, Lizhu Lu, and William M. Yen, “Coloration of chromium-doped yttrium aluminum garnet single-crystal fiber using a divalent codopant,” Journal of Applied Physics 70, 3775 (1991).
[29] B. M. Tissue, W. Jia, L. Lu, and W. M. Yen, “Coloration of chromium-doped yttrium aluminum garnet single-crystal fibers using a divalent codopant,” Journal of Applied Physics 70, 3775 (1991).
[30] A. Sennaroglu, “Analysis and optimization of lifetime thermal loading in continuous-wave Cr4+-doped solid-state lasers,” Journal of the Optical Society of America B 18, 1578 (2001).
[31] G. M. Zverev and A. V. Shestakov, “Tunable near-infrared oxide crystal lasers,” Tunable Solid State Laser 5 of OSA Proceedings Series, M. Shnad and H. P. Jenssen, eds, 66 (1989).
[32] N. I. Borodin, A. G. Okhrimchuk, and A. V. Shestakov, “Polarizing spectroscopy of Y3Al5O12, SrAl2O4, and CaAl2O4 crystals containing Cr4+,” Advanced Solid State Lasers 13 of OSA Proceeding Series, G. Dube and L. Chase, eds , 42 (1992).
[33] H. Eilers, U. Hömmerich, S. M. Jacobsen, and W. M. Yen, “Spectrocopy and dynamics of Cr4+: Y3Al5O12,” Physical Review B 49, 15505 (1994).
[34] Y. Chang, “Ultrafast optical pulse generation from Cr4+-doped yttrium aluminum garnet tunable solid-state laser,” Ph. D. dissertation, National Library of Canada (1999).
[35] S. Kück, J. Koetke, K. Petermann, U. Pohlmann, and G. Huber, “Spectroscopic and laser studies of Cr4+:YAG and Cr:Y2SiO5,” Advanced Solid State Lasers (1993).
[36] V. Petricevic, S. K. Gayen, R. R. Alfano, K. Yamagishi, H. AnZai, and Y. Yamaguchi, “Laser action in chromium-doped forsterite,” Applied Physics Letters 52, 1040 (1988).
[37] H. R. Verdun, L. M. Thomas, D. M. Andrausks, T. McCollum, and A. Pinto, “Chromium-doped forsterite laser pumped with 1.06 μm radiation,” Applied Physics Letters 53, 2593 (1988).
[38] A. Sugimoto, Y. Nobe, and K. Yamagishi, “Crystal growth and optical characterization of Cr, Ca:Y3Al5O12,” Journal of Crystal Growth 140, 349 (1994).
[39] http://www.webelements.com/
[40] G. A. Magel, M. M. Fejer , and R. L. Byer, “Quasi-phase-matched second harmonic generation of blue light in periodically poled LiNbO3”, Applied Physics Letters 56, 108 (1990).
[41] L. Hesseling and S. Redfield, “Photorefractive holographic recording in strontium barium niobate fiber”, Optics Letters 13, 877 (1988).
[42] J. L. Caslavsky and D. J. Viechinicki, “Melting behaviour and metastability of yttrium aluminium garnet (YAG) and YAlO3 determined by optical differential thermal analysis,” Journal of Materials Science 15, 1709 (1980)
[43] D. C. Hanna, R. M. Percival, I. R. Perry,R. G. Smart, P. J. Sun1, “Continuous-wave oscillation of a monomode ytterbium-doped fiber laser”, Electronics Letters 24, 1111 (1988).
[44] J. R. Armitage, R. Wyatt, B. J. Ainslie, S. P. Craig-Ryan,“Highly efficient 980nm operation of an Yb3+-doped silica fibre laser”, Electronics Letters 25, 298 (1989).
[45] Mark W. Zemansky and R. H. Dittman, “Heat and thermodynamics,” McGraw-Hill. 7, 93 (1997).
[46] Taylor Lyman, “Metallography, structures and phase diagrams,” American society for metals 8 (1973).
[47] 余樹楨,“晶體之結構與性質”,渤海堂 (2000)。
[48] C. Bibeau, R. J. Beach, S. C. Mitchell, M. A. Emanuel, J. Skidmore, C. A. Ebbers, S. B. Sutton, and K. S. Jancaitis,“High-Average-Power 1-m Performance and Frequency Conversion of a Diode-End-Pumped Yb :YAG Laser”, IEEE Journal of Quantum Electronics 34, 2010 (1998).
[49] Jui-Yun Yi, ”Multi-Pass Yb:YAG ring lasers”, Ph.D. Dissertation, National Sun Yat-sen University, Taiwan (2006).
[50] Masaki Tsunekane, and Takunori Taira,” High-power CW operation and beam quality of a diode edge-pumped, composite all-ceramic Yb:YAG microchip laser”, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD), pp. CThDD3 (2007).
[51] D. Sangla, N. Aubry, J. Didierjean, D. Perrodin, F. Balembois, K. Lebbou, A. Brenier, P. Georges, J.-M. Fourmigue, O. Tillement, “First demonstration of laser emission from an Yb:YAG Single Crystal Fiber grown by the Micro-Pulling Down technique”, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD), pp. CThFF4 (2008).
[52] D. Sangla, N. Aubry, J. Didierjean, D. Perrodin, F. Balembois, K. Lebbou, A. Brenier, P. Georges, O. Tillement, J.-M. Fourmigué,” Diode-pumped laser with Yb:YAG single-crystal fiber grown by the micro-pulling down technique”, Applied Physics B: Laser and Optics 94, 203 (2008).
[53] D. Sangla, N. Aubry, J. Didierjean , D. Perrodin, F. Balembois, K. Lebbou, A. Brenier, P. Georges, J.-M. Fourmigue, O. Tillement,“ High power laser with Yb:YAG single crystal fibers directly grown by the micro-pulling down technique”, in Advanced Solid-State Photonics, OSA Technical Digest Series (CD), pp. TuB16 (2009).
[54] D. C. Hanna, R. M. Percival, I. R. Perry,R. G. Smart, P. J. Sun1, “Continuous-wave oscillation of a monomode ytterbium-doped fiber laser”, Electronics Letters 24, 1111 (1988).
[55] J. R. Armitage, R. Wyatt, B. J. Ainslie, S. P. Craig-Ryan,“Highly efficient 980nm operation of an Yb3+-doped silica fibre laser”, Electronics Letters 25, 298 (1989).
[56] H. M. Pask, Robert J. Carman, David C. Hanna, Anne C. Tropper, Colin J. Mackechnie, Paul R. Barber, and Judith M. Dawes,” Ytterbium-Doped Silica Fiber Lasers: Versatile Sources for the 1-1.2 pm Region”, IEEE Journal of Selected Topics in Quantum Electronics 1, 2 (1995).
[57] I. Kelson and A. A. Hardy, “Strongly pumped fiber lasers”, IEEE Journal of Quantum Electronics 34, 1570 (1998).
[58] Y. Jeong, J.K. Sahu, D.N. Payne and J. Nilsson,”Ytterbium-doped large-core fibre laser with 610W of near diffraction-limited output Power”, Electronics Letters 40, 1527 (2004).
[59] Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson,” Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power”, Optics Express 12, 6088 (2004).
[60] Y. W. Lee, S. Sinha, M. J. F. Digonnet, and R. L. Byer, “20 W single-mode Yb3+-doped phosphate fiber laser”, Optics Letters 31, 3255 (2006).
[61] D. Xue, Q. Lou, J. Zhou, “Comparison of Yb-doped fiber laser with one-end and double-end pumping configuration”, Optics & Laser Technology 39, 871 (2007).
[62] U. Pedrazza, V. Romano, W. Lüthy,”Yb3+:Al3+:sol-gel silica glass fiber laser”, Optical Materials 29, 905 (2007).
[63] F. Röser, C. Jauregui, J. Limpert, A. Tünnermann,”94 W 980 nm high brightness Yb-doped fiber Laser”, Optics Express 16, 17310 (2008).
[64] 鄭景庭,掺鐿石榴石-玻璃光纖雷射之研製,國立高雄應用科技大學,光電與通訊工程研究所,碩士論文 (2008)。[65] W. F. Krupke, “Ytterbium solid-state lasers- The first decade”, IEEE Journal on Selected Topics in Quantum Electronics 6, 1287 (2000).
[66] S. Uemura and K. Torizuka, “Center-wavelength-shifted passively mode-locked diode-pumped ytterbium (Yb): Yttrium aluminum garnet (YAG) laser”, Japanese Journal of Applied Physics 44, 361 (2005).
[67] Valerii V. Ter-Mikirtychev and Viktor A. Fromzel,”Directly single-diode-pumped continuous-wave Yb3+:YAG laser tunable in the 1047-1051nm wavelength range”, Applied Optics 39, 4964 (2000).
[68] 裴善莊,雙鏡式立體環型共振腔單縱模紅外光與藍光雷射之研製,國立中山大學,碩士論文 (2003)。[69] K. Arai, H. Namikawa, K. Kumata, and T. Honda, 1986, “Alumlnum or phosphorus co-doping effects on the fluorescence and structural properties of neodymium-doped silica glass”, Journal of Applied Physics 59, 3430 (1986).
[70] 蕭鈞夫,摻鐿釔鋁石榴石光纖雷射最佳化之研究,國立高雄應用科技大學,碩士論文(2009)