(3.231.29.122) 您好!臺灣時間:2021/02/25 16:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:柯志鵬
研究生(外文):CHIH-PENG KE
論文名稱:高效率之摻鉻釔鋁石榴石雙纖衣晶體光纖雷射
論文名稱(外文):Efficient, Low-threshold Cr4+:YAG Double-clad Crystal Fiber Laser
指導教授:黃升龍劉世崑劉世崑引用關係
指導教授(外文):Sheng-Lung HuangShih-Kun Liu
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:光電與通訊研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:146
中文關鍵詞:掺鉻釔鋁石榴石雙纖衣光纖雷射居量反轉閥值銀膠銅鋁合金近場
外文關鍵詞:Cr4+:YAGDouble-cladFiber laserPopulation inversionThresholdSilver gelAl-Cu alloyNear-field
相關次數:
  • 被引用被引用:0
  • 點閱點閱:705
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於過渡金屬具有未屏蔽電子組態,故將其摻入晶體作為雷射增益介質可獲得極為寬頻之發光特性。在700-1000 nm波段,鈦藍寶石(Ti3+:sapphire)雷射已廣泛應用於寬頻可調雷射及鎖模雷射上。但在1200-1600 nm之光通訊波段,因摻Cr4+濃度低及熱效應問題,使得摻Cr4+雷射在此光通訊波段上進展受限。於本論文中,我們以共同提拉雷射加熱基座生長法生長出具雙纖衣(double-clad)結構之摻鉻釔鋁石榴石(Cr4+:YAG)晶體光纖(crystal fiber),並將之以銀膠(silver gel)包覆作被動散熱(passive cooling)方式成功研製出室溫下斜率效率(18.1%)及最低激發閥值(62.6 mW)。當雷射運作溫度控制在13 oC下時,可獲得20.1%之高斜率效率及52.7 mW之低激發閥值。其中激發閥值相較文獻上塊材式之摻鉻釔鋁石榴石雷射低超過1個數量級以上。另一方面,本論文亦首次發現,因使用銀膠與銅鋁合金兩種不同封裝包覆造成Cr4+:YAG晶體光纖受到不同的封裝應力,分別在輸出特性上產生一段與兩段斜率效率也影響雷射輸出波長。雷射波長輸出與溫度相依性,代表此雙纖衣結構之Cr4+:YAG晶體光纖可提供較塊材(bulk)更大之增益。以上結果顯示,此雙纖衣晶體光纖雷射具有極高效率及極低激閥值。未來相當有潛力研製成通訊用之波長可調光纖雷射。此外,以具高空間解析率之近場掃瞄光學顯微鏡對Cr4+:YAG雙纖衣晶體光纖雷射之近場特性作分析,並與其遠場光學特性做一詳細之探討與比較。其近場光學實驗量測與模擬結果比對顯示,當多模(multimode)之Cr4+:YAG雙纖衣晶體光纖作為主動雷射元件時,可以極接近完美高斯之單模(single mode)作輸出,其光束品質因子(M2)約為1.1。此近場光學量測結果可為將來設計可調通訊用波長可調光纖雷射或鎖模(mode-locked)雷射提供一重要參考依據。最後我們也針對所研製之晶體光纖雷射進行模擬,其結果與實驗結果相符合。
Due to the nature of the unscreened electronic configuration, the transitional-metal-doped YAG can be used as the gain medium of lasers for broadband application. Ti3+: sapphire lasers have been widely used as tunable and mode-locked laser in the 700-1000 nm wavelength range. However the progress for the application of optical communication in the 1200-1600 nm wavelength range has been hindered by the problem of heat dissipation and low concentration of Cr4+ ion in tetrahedral position. In the thesis, we report continuous-wave Cr4+:YAG fiber lasers with a double-clad crystal structure grown by the co-drawing laser-heated pedestal growth method. The lasers operated in the room temperature have a slope efficiency of 18.1% and a threshold of 62.6 mW. Under the temperature of 13℃, the lasers have a better performance with a slope efficiency of 20.1% and a threshold of 62.6 mW. The lasing threshold of the lasers is an order of magnitude lower than the previous reported Cr4+:YAG fiber lasers. In this work, two different alloys, Cu-Al and silver gel, are used separately in laser packaging. The lasers with Cu-Al package show an output character of double-slope efficiency due to high strain built introduced by the package, while the lasers with silver gel package demonstrate ordinary output characteristics of single-slope efficiency. Temperature-dependent study shows that the Cr4+:YAG in the double-clad structure has much higher gain-bandwidth product than the crystal in bulk form. The high slope efficiency and low threshold characters of the Cr4+:YAG fiber laser with a double-clad structure have a potential use as tunable broadband lasers in the1200-1600 nm wavelength range. Further, the near-field and far-field characteristics of the lasers are obtained by a highly spatial resolved near-field scanning optical microscope. The experimental results agree well with the theoretical results. The output of this multimode Cr4+:YAG double-clad fiber lasers have nearly perfect Gaussian beam character with a beam quality factor M2 of about 1.1. The near-field characteristics offer a useful guideline for further fabricating broadband tunable lasers and mode-locked lasers in all-optical communication systems. Finally, some simulations of the laser output power have been developed to predict the experimental results.
致謝
中文摘要••••••••••••••••••••••••••••••••••••••••••••••••i
英文摘要•••••••••••••••••••••••••••••••••••••••••••••••ii
目錄••••••••••••••••••••••••••••••••••••••••••••••••••iv
圖目錄•••••••••••••••••••••••••••••••••••••••••••••••••vi
表目錄••••••••••••••••••••••••••••••••••••••••••••••••••x

第一章 緒論••••••••••••••••••••••••••••••••••••••••••••1
1.1 前言••••••••••••••••••••••••••••••••••••1
1.2 文獻回顧••••••••••••••••••••••••••••••••2
1.3 研究動機與目的•••••••••••••••••••••••••••5
1.4 論文架構••••••••••••••••••••••••••••••••5

第二章 Cr4+:YAG晶體••••••••••••••••••••••••••••••••••••7
2.1 Cr4+:YAG晶體之材料特性•••••••••••••••••••7
2.2 Cr4+:YAG晶體之光學特性••••••••••••••••••16
2.3 Cr4+離子電荷補償••••••••••••••••••••••••19

第三章 Cr4+:YAG雙纖衣晶體光纖••••••••••••••••••••••••••23
3.1 共同提拉雷射加熱生長法•••••••••••••••••••23
3.2 離子摻雜濃度分佈量測•••••••••••••••••••••31
3.3 折射率與螢光分佈量測•••••••••••••••••••••32
3.4 光纖傳輸模態••••••••••••••••••••••••••••37

第四章 Cr4+:YAG雙纖衣晶體光纖雷射 •••••••••••••••••••••••41
4.1 雷射元件之製備•••••••••••••••••••••••••••41
4.2 遠場雷射特性之量測架構••••••••••••••••••••53
4.3 遠場雷射特性之結果與分析••••••••••••••••••61
4.4 近場雷射特性之量測架構••••••••••••••••••••70
4.5 近場雷射特性之結果與分析••••••••••••••••••75

第五章 Cr4+:YAG雙纖衣晶體光纖雷射之最佳化 •••••••••••••••81
5.1 理論模擬架構•••••••••••••••••••••••••••••81
5.2 最佳化模擬分析•••••••••••••••••••••••••••88

第六章 結論與未來工作•••••••••••••••••••••••••••••••••••93
6.1 結論••••••••••••••••••••••••••••••••••••93
6.2 未來工作••••••••••••••••••••••••••••••••96

參考文獻••••••••••••••••••••••••••••••••••••••••••••••••97
中英對照表•••••••••••••••••••••••••••••••••••••••••••••104
附錄: Yb3+:YAG-silica單纖衣光纖雷射•••••••••••••••••••••108
簡歷••••••••••••••••••••••••••••••••••••••••••••••••••128
[1] I. D. Abella and C. H. Townes, “Mode characteristics and coherence in optical ruby masers,” Nature 192, 957 (1961).
[2] T. P. Hughes, and K. M. Young, “Mode sequences in ruby laser emission,” Nature 196, 332 (1962).
[3] M. S. Lipsett, and L. Mandel, “Quasi-continuous output from a ruby optical maser,” Nature 196, 547 (1963).
[4] P. Hu, “Stimulated emission of 20-cm-1 phonons in ruby,” Physical Review Letters 44, 417 (1980).
[5] P. E. Jessop and A. Szabo, “Resonant optical energy transfer in ruby,” Physical Review Letters 45, 1712 (1980).
[6] J. C. Walling, O. G. Jenssen, H. P. Jenssen, R. C. Mirris, and E. W. O’Dell, “Tunable alexandrite lasers,” IEEE Journal Quantum Electronics QE-16, 1702 (1980).
[7] P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” Journal of the Optical Society of America B: Optical Physics 3, 125 (1986).
[8] I. T. Sorokina, S. Naumov, E. Sorokin, E. Wintner, and A. V. Shestakov, “Directly diode-pumped tunable continuous-wave room-temperature Cr4+:YAG laser,” Optics Letters 24, 1578 (1999).
[9] A. Sennaroglu, C. R. Pollock, and H. Nathel, “Continuous-wave self-mode-locked operation of a femtosecond Cr4+:YAG laser,” Optics Letters 19, 390 (1994).
[10] C. Y. Lo, K. Y. Huang, J. C. Chen, C. Y. Chuang, C. C. Lai, S. L. Huang, Y. S. Lin, and P. S. Yeh, “Double-clad Cr4+:YAG crystal fiber amplifier,” Optics Letters 30, 129 (2005).
[11] C. Y. Lo, K. Y. Huang, J. C. Chen, S. Y. Tu, and S. L. Huang, “Glass-clad Cr4+:YAG crystal fiber for the generation of superwideband amplified spontaneous emission,” Optics Letters 29, 439 (2004).
[12] M. M. Fejer, J. L. Nightingale, G. A. Magel, and R. L. Byer, “Laser-heated-miniature pedestal growth apparatus for single-crystal fibers,” Optics Letters 11, 437 (1986).
[13] D. B. Gasson and B. Cockayne, “Oxide crystal growth using gas lasers,” Journal of Materials Science 5, 100 (1970).
[14] J. Stone and C. A. Burrus, “Self-contained LED-pumped single crystal Nd:YAG fiber laser,” Fiber and Integrated Optics 2, 19 (1979).
[15] D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “165-W cryogenically cooled Yb:YAG laser”, Optics Letters 29, 2154 (2004).
[16] N. B. Angert, N. I. Borodin, V. M. Garmash, V. A. Zhitnyuk, A. G. Okhrimchuk, O. G. Siyuchenko, and A. V. Shestakov, “Lasing due to impurity color centers in yttrium aluminum garnet crystals at wavelengths in the range 1.35-1.45 μm,” Soviet Journal of Quantum Electronics 18, 73 (1988).
[17] P. M. W. French, N. H. Rizvi, and J. R. Taylor, “Continuous-wave mode-locked Cr4+:YAG laser,” Optics Letters 18, 39 (1993).
[18] A. Sennaroglu and C. R. Pollock, “Continuous-wave self-mode-locked operation of a femtosecond Cr4+:YAG laser,” Optics Letters 19, 390 (1994).
[19] A. Sennaroglu and C. R. Pollock, “Efficient continuous-wave chromium-doped YAG laser,” Journal of the Optical Society of America B 12, 930 (1995).
[20] S. Ishibashi, K. Naganuma, and I. Yokohama, “Cr, Ca:Y3Al5O12 laser crystal grown by the laser heated pedestal growth method,” Journal of Crystal Growth 183, 614 (1998).
[21] I. T. Sorokina, S. Naumov, E. Sorokin, and E. Wintnter, “ Directly diode-pumped tunable continuous-wave room-temperature Cr4+:YAG laser,” Optics Letters 24, 1578 (1999).
[22] D. J. Ripin, C. Chudobs, J. T. Gopinath, J. G. Fujimoto, and E. P. Ippen, “Generation of 20-fs pulses by a prismless Cr4+:YAG laser,” Optics Letters 27, 61 (2002).
[23] S. Ishibashi and K. Naganuma, “Diode pumped Cr4+:YAG single crystal fiber laser,” Advanced Solid-State Lasers, OSA Technical Digest, Davos, Switzerland, 103 (2000).
[24] 林志威,摻鉻釔鋁石榴石雙纖衣晶體光纖雷射,國立中山大學,碩士論文 (2008)。
[25] I. T. Sorokina, S. Naumov, E. Sorokin, and A. G. Okhrimchuk, “The mechanisms of slow bleaching in YAG:Cr4+ under CW pumping,” Proceedings on SPIE 4350, 99 (2001).
[26] H. Eilers, W. M. Dennis, W. M. Yen, S. Kück, K. Peterman, G. Huber, and W. Jia, “Performance of a Cr:YAG Laser,” IEEE Journal Quantum Electronics 29, 2508 (1993)
[27] S. A. Markgraf, M. F. Pangborn, and R. Dieckmann, “Influence of different divalent co-dopants on the Cr4+ content of Cr-doped Y3Al5O12,” Journal of Crystal Growth 180, 81 (1997).
[28] B. M. Tissue, W. Jia, Lizhu Lu, and William M. Yen, “Coloration of chromium-doped yttrium aluminum garnet single-crystal fiber using a divalent codopant,” Journal of Applied Physics 70, 3775 (1991).
[29] B. M. Tissue, W. Jia, L. Lu, and W. M. Yen, “Coloration of chromium-doped yttrium aluminum garnet single-crystal fibers using a divalent codopant,” Journal of Applied Physics 70, 3775 (1991).
[30] A. Sennaroglu, “Analysis and optimization of lifetime thermal loading in continuous-wave Cr4+-doped solid-state lasers,” Journal of the Optical Society of America B 18, 1578 (2001).
[31] G. M. Zverev and A. V. Shestakov, “Tunable near-infrared oxide crystal lasers,” Tunable Solid State Laser 5 of OSA Proceedings Series, M. Shnad and H. P. Jenssen, eds, 66 (1989).
[32] N. I. Borodin, A. G. Okhrimchuk, and A. V. Shestakov, “Polarizing spectroscopy of Y3Al5O12, SrAl2O4, and CaAl2O4 crystals containing Cr4+,” Advanced Solid State Lasers 13 of OSA Proceeding Series, G. Dube and L. Chase, eds , 42 (1992).
[33] H. Eilers, U. Hömmerich, S. M. Jacobsen, and W. M. Yen, “Spectrocopy and dynamics of Cr4+: Y3Al5O12,” Physical Review B 49, 15505 (1994).
[34] Y. Chang, “Ultrafast optical pulse generation from Cr4+-doped yttrium aluminum garnet tunable solid-state laser,” Ph. D. dissertation, National Library of Canada (1999).
[35] S. Kück, J. Koetke, K. Petermann, U. Pohlmann, and G. Huber, “Spectroscopic and laser studies of Cr4+:YAG and Cr:Y2SiO5,” Advanced Solid State Lasers (1993).
[36] V. Petricevic, S. K. Gayen, R. R. Alfano, K. Yamagishi, H. AnZai, and Y. Yamaguchi, “Laser action in chromium-doped forsterite,” Applied Physics Letters 52, 1040 (1988).
[37] H. R. Verdun, L. M. Thomas, D. M. Andrausks, T. McCollum, and A. Pinto, “Chromium-doped forsterite laser pumped with 1.06 μm radiation,” Applied Physics Letters 53, 2593 (1988).
[38] A. Sugimoto, Y. Nobe, and K. Yamagishi, “Crystal growth and optical characterization of Cr, Ca:Y3Al5O12,” Journal of Crystal Growth 140, 349 (1994).
[39] http://www.webelements.com/
[40] G. A. Magel, M. M. Fejer , and R. L. Byer, “Quasi-phase-matched second harmonic generation of blue light in periodically poled LiNbO3”, Applied Physics Letters 56, 108 (1990).
[41] L. Hesseling and S. Redfield, “Photorefractive holographic recording in strontium barium niobate fiber”, Optics Letters 13, 877 (1988).
[42] J. L. Caslavsky and D. J. Viechinicki, “Melting behaviour and metastability of yttrium aluminium garnet (YAG) and YAlO3 determined by optical differential thermal analysis,” Journal of Materials Science 15, 1709 (1980)
[43] D. C. Hanna, R. M. Percival, I. R. Perry,R. G. Smart, P. J. Sun1, “Continuous-wave oscillation of a monomode ytterbium-doped fiber laser”, Electronics Letters 24, 1111 (1988).
[44] J. R. Armitage, R. Wyatt, B. J. Ainslie, S. P. Craig-Ryan,“Highly efficient 980nm operation of an Yb3+-doped silica fibre laser”, Electronics Letters 25, 298 (1989).
[45] Mark W. Zemansky and R. H. Dittman, “Heat and thermodynamics,” McGraw-Hill. 7, 93 (1997).
[46] Taylor Lyman, “Metallography, structures and phase diagrams,” American society for metals 8 (1973).
[47] 余樹楨,“晶體之結構與性質”,渤海堂 (2000)。
[48] C. Bibeau, R. J. Beach, S. C. Mitchell, M. A. Emanuel, J. Skidmore, C. A. Ebbers, S. B. Sutton, and K. S. Jancaitis,“High-Average-Power 1-m Performance and Frequency Conversion of a Diode-End-Pumped Yb :YAG Laser”, IEEE Journal of Quantum Electronics 34, 2010 (1998).
[49] Jui-Yun Yi, ”Multi-Pass Yb:YAG ring lasers”, Ph.D. Dissertation, National Sun Yat-sen University, Taiwan (2006).
[50] Masaki Tsunekane, and Takunori Taira,” High-power CW operation and beam quality of a diode edge-pumped, composite all-ceramic Yb:YAG microchip laser”, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD), pp. CThDD3 (2007).
[51] D. Sangla, N. Aubry, J. Didierjean, D. Perrodin, F. Balembois, K. Lebbou, A. Brenier, P. Georges, J.-M. Fourmigue, O. Tillement, “First demonstration of laser emission from an Yb:YAG Single Crystal Fiber grown by the Micro-Pulling Down technique”, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD), pp. CThFF4 (2008).
[52] D. Sangla, N. Aubry, J. Didierjean, D. Perrodin, F. Balembois, K. Lebbou, A. Brenier, P. Georges, O. Tillement, J.-M. Fourmigué,” Diode-pumped laser with Yb:YAG single-crystal fiber grown by the micro-pulling down technique”, Applied Physics B: Laser and Optics 94, 203 (2008).
[53] D. Sangla, N. Aubry, J. Didierjean , D. Perrodin, F. Balembois, K. Lebbou, A. Brenier, P. Georges, J.-M. Fourmigue, O. Tillement,“ High power laser with Yb:YAG single crystal fibers directly grown by the micro-pulling down technique”, in Advanced Solid-State Photonics, OSA Technical Digest Series (CD), pp. TuB16 (2009).
[54] D. C. Hanna, R. M. Percival, I. R. Perry,R. G. Smart, P. J. Sun1, “Continuous-wave oscillation of a monomode ytterbium-doped fiber laser”, Electronics Letters 24, 1111 (1988).
[55] J. R. Armitage, R. Wyatt, B. J. Ainslie, S. P. Craig-Ryan,“Highly efficient 980nm operation of an Yb3+-doped silica fibre laser”, Electronics Letters 25, 298 (1989).
[56] H. M. Pask, Robert J. Carman, David C. Hanna, Anne C. Tropper, Colin J. Mackechnie, Paul R. Barber, and Judith M. Dawes,” Ytterbium-Doped Silica Fiber Lasers: Versatile Sources for the 1-1.2 pm Region”, IEEE Journal of Selected Topics in Quantum Electronics 1, 2 (1995).
[57] I. Kelson and A. A. Hardy, “Strongly pumped fiber lasers”, IEEE Journal of Quantum Electronics 34, 1570 (1998).
[58] Y. Jeong, J.K. Sahu, D.N. Payne and J. Nilsson,”Ytterbium-doped large-core fibre laser with 610W of near diffraction-limited output Power”, Electronics Letters 40, 1527 (2004).
[59] Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson,” Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power”, Optics Express 12, 6088 (2004).
[60] Y. W. Lee, S. Sinha, M. J. F. Digonnet, and R. L. Byer, “20 W single-mode Yb3+-doped phosphate fiber laser”, Optics Letters 31, 3255 (2006).
[61] D. Xue, Q. Lou, J. Zhou, “Comparison of Yb-doped fiber laser with one-end and double-end pumping configuration”, Optics & Laser Technology 39, 871 (2007).
[62] U. Pedrazza, V. Romano, W. Lüthy,”Yb3+:Al3+:sol-gel silica glass fiber laser”, Optical Materials 29, 905 (2007).
[63] F. Röser, C. Jauregui, J. Limpert, A. Tünnermann,”94 W 980 nm high brightness Yb-doped fiber Laser”, Optics Express 16, 17310 (2008).
[64] 鄭景庭,掺鐿石榴石-玻璃光纖雷射之研製,國立高雄應用科技大學,光電與通訊工程研究所,碩士論文 (2008)。
[65] W. F. Krupke, “Ytterbium solid-state lasers- The first decade”, IEEE Journal on Selected Topics in Quantum Electronics 6, 1287 (2000).
[66] S. Uemura and K. Torizuka, “Center-wavelength-shifted passively mode-locked diode-pumped ytterbium (Yb): Yttrium aluminum garnet (YAG) laser”, Japanese Journal of Applied Physics 44, 361 (2005).
[67] Valerii V. Ter-Mikirtychev and Viktor A. Fromzel,”Directly single-diode-pumped continuous-wave Yb3+:YAG laser tunable in the 1047-1051nm wavelength range”, Applied Optics 39, 4964 (2000).
[68] 裴善莊,雙鏡式立體環型共振腔單縱模紅外光與藍光雷射之研製,國立中山大學,碩士論文 (2003)。
[69] K. Arai, H. Namikawa, K. Kumata, and T. Honda, 1986, “Alumlnum or phosphorus co-doping effects on the fluorescence and structural properties of neodymium-doped silica glass”, Journal of Applied Physics 59, 3430 (1986).
[70] 蕭鈞夫,摻鐿釔鋁石榴石光纖雷射最佳化之研究,國立高雄應用科技大學,碩士論文(2009)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔