跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/18 11:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳勇毅
研究生(外文):Yong-YI Chen
論文名稱:表面活性劑與離子佈值對單晶矽非等向性蝕刻之蝕刻效應研究
論文名稱(外文):Study on the Effet of Surfactant Adding and Ion Implantation Process in the Anisotropic Etching of Single-Crystal Silicon
指導教授:陳忠男
指導教授(外文):Chung-Nan Chen
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:光電與通訊研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:101
中文關鍵詞:TMAH硼氟Triton
外文關鍵詞:TMAHTritonBF2
相關次數:
  • 被引用被引用:0
  • 點閱點閱:643
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文的研究主旨為探討TMAH添加表面活性劑與單晶矽的雜質佈值對單晶矽在TMAH蝕刻溶液的蝕刻效應。本研究分別利用前述研究成果,以TMAH添加表面活性劑Triton X-100的蝕刻溶液製作出V形三維懸浮結構;並利用硼氟離子佈值與非等向性蝕刻製作單晶矽懸浮微結構和<111>單晶矽紅外線發射器。
實驗中利用25%TMAH添加0.1%體積比的表面活性劑Triton X-100來抑制<110>晶格方向的蝕刻速率,藉此定義<110>抑制面,完成<110>方向的V形三維懸浮結構。離子佈值的雜質為硼、磷、氮、砷、氬、硼氟離子,實驗發現,<111>單晶矽摻雜硼氟離子後,提高<111>晶格在5%雙摻雜TMAH蝕刻溶液中對未摻雜<100>晶格的蝕刻選擇比達12899倍。上述的製程研究結果,我們成功地製作出厚度約200奈米的<100>和<111>單晶矽浮板以及<111>單晶矽紅外線發射器。單晶矽紅外線發射器的阻值為69 R/sq、電阻溫度係數為0.0639 %/℃。
The purpose of this dissertation is to study the etching effect of single-crystal silicon in the surfactant-added tetramethyl ammonium hydroxide (TMAH) solutions and the etch stop effect of doped silicon in TMAH solutions. In this study, the V-shaped three-dimensional suspended structures were fabricated in the surfactant-added TMAH. Furthermore, the single-crystal silicon membranes and <111>-oriented single-crystal silicon infrared micro-emitters were completed by using BF2 implantation and anisotropic etching processes.
In our work, 0.1% volume ratio Triton X-100 was used as the surfactant in 25wt% TMAH solution, which was employed to restrain the etch rate of <110>-oriented silicon. The etch-stop <110>-oriented surface was observed obviously in this experiment results. The impurities, such as boron, phosphorus, nitrogen, arsenic, argon and boron fluoride, were implanted into single-crystal silicon wafers in order to improve the etching selectivity. The etch experiment shows the etch selectivity of the undoped <100>-oriented silicon to BF2 doped <111>-oriented silicon is 12899:1 in 5wt% dual doped TMAH.
Single-crystal silicon membranes with a thickness of 200 nm and <111>-oriented single-crystal silicon infrared micro-emitters were fabricated by using BF2 implantation and anisotropic etching. The sheet resistance and the temperature coefficient of resistance (TCR)of infrared micro-emitter are 69Ω/sq and 0.0639 %/℃ respectively.
摘要 I
ABSTRACT II
致 謝 IV
目 錄 V
表 目 錄 VII
圖 目 錄 VIII
第一章、緒論
1.1 文獻回顧
1.2 研究目的
1.3 論文架構
第二章、微機電懸浮結構之製程介紹
2.1 矽的非等向性蝕刻
2.1.1 單晶矽晶格方向與蝕刻輪廓之基本觀念
2.1.2 非等向性蝕刻溶液的種類與選擇
2.2 重摻雜製程介紹
2.2.1 離子佈值製程與退火
第三章、製程設計與應用
3.1 雜質摻雜與表面活性劑
3.1.1雜質摻雜製程設計
3.1.2表面活性劑(Triton X-100)非等向性濕蝕刻實驗
3.1.3 非等向性濕蝕刻實驗
3.2 懸浮微結構製程設計
3.2.1 V形3-D懸浮微結構製程設計
3.2.2 單晶矽摻雜BF2懸浮微結構製程設計
3.3 發射器元件製程
第四章、實驗結果與討論
4.1 離子佈值實驗結果
4.1.1 摻雜離子濃度分佈圖
4.2 非等向性蝕刻實驗結果
4.2.1 TMAH蝕刻液耐久度測試
4.2.2 各種摻雜與薄膜的蝕刻率結果
4.2.2 各種摻雜晶片與未摻雜晶片的蝕刻選擇比
4.3 V形3-D懸浮微結構實驗結果
4.3.1 純TMAH與TMAH加入表面活性劑比較
4.3.2 V形3-D懸浮微結構
4.4單晶矽摻雜BF2懸浮微結構
4.4.1 單晶矽<111>晶片摻雜BF2之懸浮結構
4.4.2 單晶矽<100>晶片摻雜BF2之懸浮結構
4.4 電性量測
4.4.1 各摻雜元素之片電阻
4.4.2 紅外線發射器之TCR
4.5 紅外線發射器製作結果
第五章、結論
參考文獻
[1]G. T. A. KOVACS, N. I. MALUF, K. E. PETERSEN, “Bulk Micromachining of Silicon”, IEEE.
[2]P. Pal, K. Sato,“Complex three-dimensional structures in Si{1 0 0} using wet bulk micromachining”, Journal of Micromechanics and Microengineering,J. Micromech. Microeng. 19 (2009) 105008 (9pp).
[3]S. Aravamudhan, N. S. Ramgir, S. Bhansali, “Electrochemical biosensor for targeted detection in blood using aligned Au nanowires”, Sensors and Actuators B 127 (2007) 29–35.
[4]K. Gilleo, Ph.D,”MEMS in Medicine”.
[5]E. M. Conway, V. J. Cunnane, “Electrochemical characterization of Si in tetra-methyl ammonium hydroxide (TMAH) and TMAH:Triton-X-100 solutions under white light effects”, Journal of Micromechanics and Micorengineering, J. Micromech. Microeng. 12 (2002) 136–148.
[6]I. Zubel, M. Kramkowska, “The effect of alcohol additives on etching characteristics in KOH solutions”, Sensors and Actuators A 101 (2002) 255–261.
[7]P. Papet, O. Nichiporuk, A. Kaminski, Y. Rozier, J. Kraiem, J. F. Lelievre, A. Chaumartin, A. Fave and M. Lemiti, “Pyramidal texturing of silicon solar cell with TMAH chemical anisotropic etching”, Solar Energy Materials & Solar Cells 90 (2006) 2319–2328.
[8]X. Duan, “Microfabrication Using Bulk Wet Etching with TMAH”,A thesis submitted to McGill University in the requirements of Master Degree in Science.
[9]K. Biswas, S. Kal, “Etch characteristics of KOH, TMAH and dual doped TMAH for bulk micromachining of silicon”, Microelectronics Journal 37 (2006) 519–525.
[10]O. Tabata, “pH-controlled TMAH etchants for silicon micromachining”, Sensors and Actuators A 53 (1996) 335-339.
[11]K. Biswas, S. Das, D.K. Maurya, S. Kal and S.K. Lahiri ,“Bulk micromachining of silicon in TMAH-based etchants for aluminum passivation and smooth surface”, Microelectronics Journal 37 (2006) 321–327.
[12]D. Humbird, D. B. Graves, “Mechanism of silicon etching in the presence of CF2, F, and Ar+”, Journal of Applied Physics volume 90, number 51, September 2004.
[13]C. Iliescu, M. Carp, J. Miao, E. H. Francis , D. P. Poenar,”Analysis of highly doping with boron from spin-on diffusing source”, Surface & Coatings Technology 198 (2005) 309– 313.
[14]J. Y. Lee “Boron Back Surface Field Using Spin-On Dopants by Rapid Thermal Processing”, Journal of the Korean Physical Society, Vol. 44, No. 6, June 2004, pp. 1581-1586.
[15]E. Steinsland, M. Nese, A. Hanneborg and R. W. Bernstein, Halle Sandmo,Gjermund Kittilsland,”Boron etch-stop in TMAH solutions”, Sensors and Actuators A 54 (1996) 728-732.
[16]張文亮,”淺談超淺型接面的製程”,毫微米通訊第八卷第二期.
[17]T. Fukada, W. S. Yoo, “Post BF2 Implant Annealing using Single Wafer Rapid Thermal Furnace”.
[18]L. Lin and A. P. Pisano, “Silicon-Processed Microneedles”, IEEE Journal of Microelectromechanical System, vol.8, No.1, March 1999.
[19]H. Seidel, L. Csepregi, A. Heuberger and H. BaumgSrtel, “Anisotropic Etching of Crystalline Silicon in Alkaline Solutions”, J. Electrochem. Soc., Vol. 137, No. 1 t, November 1990.
[20]陳建州,“非等向性蝕刻製程於矽基板之應用:翻鑄模仁與矽基板V形凹槽”,中山大學機械工程研究所,碩士論文.
[21]R. E. Oosterbroek, J. W. Berenschot, H. V. Jansen, A. Jasper Nijdam, Grégory Pandraud,Albert van den Berg, and Miko C. Elwenspoek,“Etching Methodologies in 111 -Oriented Silicon Wafers”, Journal of Microelectromwchanical systems, vol. 9, NO. 3, September 2000.
[22]J. T. Borenstein, N. D. Gerrish, M. T. Currie and E. A. Fitzgerald “A New Ultra-Hard Etch-Stop layer for High Precision Micromaching”,IEEE.
[23]Virginia Semiconductor, Inc. “Wet-Chemical Etching and Cleaning of Silicon”, January 2003.
[24]P. Pal, K. Sato, M. A. Gosalvez and M. Shikida, “Study of rounded concave and sharp edge convex corners undercutting in CMOS compatible anisotropic etchants”, IOP PUBLISHING, J. Micromech. Microeng. 17 (2007) 2299–2307.
[25]H.seidel, “The Mechanism of anisotropic silicon etching and its relevance for micromachining”.
[26]張鼎張,羅正忠,“半導體製程技術導論”,歐亞出版社.
[27]W. M. van Huffelen, M. J. de Boer, and T. M. Klapwijk,”Ultrathin silicon membranes to study supercurrent transport in crystalline semiconductors”, Appl. Phys. Left., Vol. 58, No. 21, 27 May 1991.
[28]P. Pal, K. Sato, “Fabrication methods based on wet etching process for the realization of silicon MEMS structures with new shapes”, Microsyst Technol, DOI 10.1007/s00542-009-0956-5.
[29]曾鴻翰,”半導體薄膜製程之殘餘應力研究”,成功大學科學工程系,碩士論文,2004.
[30]S. Saito, S. Shishiguchi, K. Hamada and T. Hayashi,“Dopant profile and defect control in ion implantation by RTA with high ramp-up rate”, Materials Chemistry and Physics 54 (1998) 49-53.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top