(3.232.129.123) 您好!臺灣時間:2021/02/26 21:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:何宏斌
研究生(外文):HUNG-PIN HO
論文名稱:智慧型動態不確定環境決策系統-以替代料評估為例
論文名稱(外文):Intelligent Dynamic Decision System for Estimating Electronics Substitutions in Uncertain Environment
指導教授:林國平林國平引用關係
指導教授(外文):Kuo-Ping Lin
學位類別:碩士
校院名稱:龍華科技大學
系所名稱:商學與管理研究所
學門:商業及管理學門
學類:一般商業學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:81
中文關鍵詞:模糊權重平均方法模糊推論系統the weakest t-norm FWA替代料
外文關鍵詞:Fuzzy weight averageFuzzy inference systemSubstitutionthe weakest t-norm FWA
相關次數:
  • 被引用被引用:1
  • 點閱點閱:255
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:47
  • 收藏至我的研究室書目清單書目收藏:1
面對市場需求快速變動下,電子產業通常設計高彈性替代料的替代關係來有效利用物料;但由於替代料決策通常採用主觀決策且決策因素中有許多不確定因素與時間性,因此本研究發展一適合動態不確定環境下決策評估模式於電子產業產品開發中替代料決策評估,此決策評估模式為結合模糊權重平均方法(Fuzzy Weight Average; FWA)與模糊推論系統(Fuzzy Inference System)之混合式系統。為求能準確評估不確定環境下之決策本研究採用模糊權重平均方法進行替代料抉擇,且為求能有效率的進行決策本研究發展一the weakest t-norm (TW)模糊權重平均方法,由於模糊計算原則上的差異,以TW準則之計算方法可直接求取各決策方案之歸屬度函數,減少以區間計算方式之複雜度,同時由於因不同決策情境下部份評估準則之模糊權重將會隨著改變。本研究以電子製造業為對象,根據替代料的價值面考量選擇了三種替代材料,並各取三家供應商來進行研究,同時應用專家知識建立模糊推論系統,於不同決策情境下將會依據專家所建立之規則變更高關聯性準則之模糊權重,以達到最適合之決策選擇。本研究設計不同面向之模擬情境,情境A是以品質為主要考量因素,情境B是以價格為主要考量因素,情境C是以交期為主要考量因素,其目的是為了瞭解在不同情境下的所產生的決策變化。於文獻中可以發現,大部分的研究都以價格、品質及交期等三項因素列為供應商選擇之重要標準。本研究並比較傳統的??cut 與TW二種計算方法,同時亦列出α水準為0.5時的模糊數來做比較;於實例分析上可以發現以TW模糊計算方法,步驟簡便且易於明瞭,且利用TW計算出來的值,其模糊量皆小於??cut 計算出來的模糊結果,相較之下,以最小模糊量之FWA方法不只保留了模糊數的原形,也提供決策者在不確定環境下較少模糊訊息的結果,對於不確定性資料能使得決策者更加能夠掌握。
Due to that the market demand is changed rapidly, the electronic industry usually designs high flexible substitutive method to efficiently utilize material. Because of the alternative material usually adopt subject decision and there are a lot of uncertain factors and the timing, the research will develop a decision support model, which may be called intelligent dynamic decision system under uncertainty, for estimating and selecting substitution in dynamic and uncertain environment. This decision evaluation model is a hybrid system combining the fuzzy weight average (FWA) with the fuzzy inference system (FIS). In order to accurately estimating the decision in uncertain environment, this research makes alternative material decision by using the FWA, and in order to making decision effectively, this research develops a model - the weakest t-norm (TW) FWA. Owing to the difference in the principle of fuzzy calculation, the weakest t-norm FWA can directly request membership function for each policy proposal and decrease the complexity in interval arithmetic method. At the same time, the fuzzy weight of some principle will be changed in different decision situation. In this paper the research also apply expert’s knowledge to build the fuzzy inference system, it will be changed the fuzzy weight of the high related criterion per expert’s rule in different decision situation. In the example of electronic industry, it found that intelligent dynamic decision system under uncertainty can present the effective policy to assist electronic industry to make substitution decision.
摘要 i
ABSTRACT iii
誌謝 iv
目錄 v
表目錄 vii
圖目錄 ix
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 3
1.3 研究目的 5
1.4 研究架構 5
1.5 研究範圍與限制 7
1.6 研究對象與資料蒐集 7
1.7 調查問卷架構 8
第二章 文獻探討 9
2.1物料採購評估 9
2.1.1 供應商選擇 9
2.1.2 供應商評選指標 11
2.2 模糊理論 16
2.2.1 模糊集合 16
2.2.2 模糊數排序與歸屬函數 17
2.3 模糊計算 18
2.3.1 α-cut模糊算術 20
2.3.2 the weakest t-norm(TW)模糊算術 21
2.3.3 解糊化 (Defuzzication) 25
2.4 模糊權重平均 27
2.5 模糊推論系統 34
第三章 研究方法 36
3.1 研究流程 36
3.2 建立評估準則及語意變數 38
3.3 採購管理相關係數分析 44
3.4 建立專家模糊推論系統 50
3.5 建立TW模糊多準則評估模組 53
第四章 實例驗證討論與分析 56
4.1 以α-cut計算結果 56
4.2 以TW計算結果 58
4.3 比較分析α-cut與TW的評量結果 59
第五章 情境模擬分析 60
5.1 模擬假設 60
5.2 模擬情境 60
5.2.1 情境A假設 (品質) 60
5.2.2 情境B假設 (價格) 61
5.2.3 情境C假設 (交期) 61
5.3 結果分析 62
5.3.1 情境A分析 62
5.3.2 情境B分析 64
5.3.3 情境C分析 67
第六章 結論與未來研究建議 70
6.1 研究結論 70
6.2 未來研究建議 71
參考文獻 72
附錄一 採購因素評估問卷 80
附錄二 採購因素評估問卷 81
Abdel-Kader, M. G., & Dugdale, D. (2001). Evaluating investments in advanced manufacturing technology: A fuzzy set theory approach. British Accounting Review, 33, 4555-489.
Amida, A., Ghodsypour, S. H., & O’Brien, C. (2006). Fuzzy multiobjective linear model for supplier selection in a supply chain. International Journal of Production Economics, 104, 394-407.
Anile, A. M., Deodato, S., & Privitera, G. (1995) .Implementing fuzzy arithmetic. Fuzzy Sets and Systems, 72, 239-250.
Avineri, E., Prashker, J., & Ceder, A. (2000). Transportation projects selection process using fuzzy sets theory. Fuzzy Sets and Systems, 116, 35-47.
Baas, S. M., & Kwakernaak, H. (1977). Rating and ranking of multiple-aspect alternatives using fuzzy sets. Automatica, 13, 47-58.
Berger, P. D., Gerstenfeld, A., & Zeng, A. Z. (2004). How many suppliers are best? A decision-analysis approach. Omega: The international Journal of Management Science, 32(1), 9-15.
Bilbao-Terol, A., Perez-Gladish, B., Arenas-Parra, M., & Rodriguez-Uria, M. V. (2006). Fuzzy Compromise Programming for Portfolio Selection, Applied Mathematics and Computation, 173(1), 251-264.
Bussion, J. C., & Garel, A. (2003). Balancing meals using fuzzy arithmetic and heuristic search algorithms. IEEE transactions on fuzzy systems, 11, 68-78.
Chan, F. T. S., & Kumar, N. (2007). Global supplier development considering risk factors using fuzzy extended AHP-based approach. Omega: The international Journal of Management Science, 35, 417-431.
Chang, P. T., & Hung, K. C. (2005). Applying the Fuzzy-weighted-average Approach to Evaluate Network Security Systems. Computers & Mathematics with Applications, 49, 1797-1814.
Chang, P. T. (2005). Fuzzy Strategic Replacement Analysis. European Journal of Operational Research, 160, 532-559.
Chang, P. T., & Hung, K. C. (2006). α-cut fuzzy arithmetic: Simplifying rules and a fuzzy function optimization with a decision variable. IEEE Transactions on Fuzzy Systems, 14, 496-510.
Chang, P. T., Hung, K. C., Lin, K. P., & Chang, C. H. (2006). A comparison of discrete algorithms for fuzzy weighted average. IEEE Transactions on Fuzzy Systems, 14(5), 663-675.
Chang, P. T., Pai, P. F., Lin, K. P., & Wu, M. S. (2006). Applying Fuzzy Arithmetic to System Dynamics for the Customer-Producer-Employment Model. International Journal of Systems Science, 37(10), 673-698.
Chen, L. H., & Weng, M. C. (2006). An Evaluation Approach to Engineering Design in QFD Processes Using Fuzzy Goal Programming Models. European Journal of Operational Research, 172(1), 230-248.
Chen, S. Y. (1996). Evaluating weapon systems using fuzzy arithmetic operations. Fuzzy Sets and Systems, 77, 265-276.
Chen, Y., Fung, R. Y. K., & Tang, J. (2006). Rating Technical Attributes in Fuzzy QFD by Integrating Fuzzy Weighted Average Method and Fuzzy Expected Value Operator. European Journal of Operational Research, 174(3), 1553-1566.
Cheng, C. H. (1999). Evaluating weapon systems using ranking fuzzy numbers. Fuzzy Sets and Systems, 107, 25-35.
Choi, T. Y., & Hartley, J. L. (1996). An exploitation of supplier selection practices across the supply chain. Journal of Operations Management, 14, 333-343.
Cortes-Carmona, M., Palma-Behnke, R., & Jimenez-Estevez, G. (2010). Fuzzy Arithmetic for the DC Load Flow. IEEE Transactions On Power Systems, 25 (1), 206-214.
Dickson, G. W. (1966). An analysis of supplier selection systems and decision. Journal of Purchasing, 2, 5-17.
Dong, W. M., & Wong, F. S. (1987). Fuzzy weighted averages and implementation of the extension principle. Fuzzy Sets and Systems, 21, 183-199.
Dong, W. M., & Wong, F. S. (1989). Interactive variables and fuzzy decisions. Fuzzy Sets and Systems, 29, 1-19.
Dowlatshahi, S. (2000). Designer-buyer-supplier Interface: Theory versus Practice. International Journal of Production Economics, 63(2), 111-130.
Dubois, D., & Prade, H. (1980). Fuzzy Sets and Systems: Theory and Applications. New York: Academic Press.
Dubois, D., Kerre, E., Mesiar, R., & Prade, H. (2000). Fuzzy interval analysis, In Fundamentals of Fuzzy Sets. Kluwer, Boston, 483-581.
Ellram, L. M. (1990). The Supplier Selection Decision in Strategic Partnerships. Journal of Purchasing and Materials Management, 26(4), 8-14.
Eua-arpon, B. (2005). Fuzzy interrupted energy assessment rate based on actual system performance. IEEE Transactions on Power Systems, 20, 156-163.
Feilong, Liu. and Mendel, J. M. (2008). Aggregation Using the Fuzzy Weighted Average as Computed by the Karnik–Mendel Algorithms. IEEE transactions on fuzzy systems, 16, 1-12.
Giachetti, R. E., & Young, R. E. (1997). Analysis of the error in the standard approximation used for multiplication of triangular and trapezoidal fuzzy numbers and the development of a new approximation. Fuzzy Sets and Systems, 91, 1-13.
Giachetti, R. E., & Young, R.E. (1997). A parametric representation of fuzzy numbers and their arithmetic operators. Fuzzy Sets and Systems, 91, 185-202.
Guerra, M. L., & Stefanini, L. (2005). Approximate fuzzy arithmetic operations using monotonic interpolations. Fuzzy Sets and Systems, 150, 5-33.
Guh, Y. Y., Hon, C. C., & Lee, E. S. (2001). Fuzzy weighted average: The linear programming approach via Charnes and Cooper’s rule. Fuzzy Sets and Systems, 117, 157-160.
Guh, Y. Y., Hong, C. C., Wang, K. M., & Lee, E. S. (1996). Fuzzy weighted average: A max-min paired elimination method. Computers and Mathematics with Applications, 32, 115-123.
Guu, S. M. (2002). Fuzzy weighted averages revisited. Fuzzy Sets and Systems, 126, 411-414.
Hanss, M. (2000). A nearly strict fuzzy arithmetic for solving problems with uncertainties. In Proc. Of 2000 Conference of the North American Fuzzy Information Processing Society (NAFIPS 2000). Atlanta, GA, 439-443.
Hauke, W. (1999). Using Yager’s t-norms for aggregation of fuzzy intervals. Fuzzy Sets and Systems, 101, 59-65.
Hon, C. C., Guh, Y. Y., Wang, K. M., & Lee, E. S. (1996). Fuzzy multiple attributes and multiple hierarchical decision making. Computers and Mathematics with applications, 32, 109-119.
Hong, D. H. (1995). A note on t-norm-based addition of fuzzy intervals. Fuzzy Sets and Systems, 75, 73-76.
Hong, D. H. (2001a). Some results on the addition of fuzzy intervals. Fuzzy Sets and Systems, 122, 349-352.
Hong, D. H. (2001b). Shape preserving multiplications of fuzzy numbers. Fuzzy Sets and Systems, 123, 81-84.
Hong, D. H., & Do, H. Y. (1997). Fuzzy system reliability analysis by the use of TW (the weakest t-norm) on fuzzy number arithmetic operations. Fuzzy Sets and Systems, 90, 307-316.
Hong, G. H., Park, S. C., Jang, D. S., & Rho, H. M. (2005). An effective supplier selection method for constructing a competitive supply-relationship. Expert Systems with Applications, 28, 629-639.
Hong, L., & Wang, G. J. (1995). Centralised integration of multisensor noisy and fuzzy data. IEEE Proc.-Control Theory Appl, 142, 459-465.
Hop, N. V. (2006). A Heuristic Solution for Fuzzy Mixed-model Line Balancing Problem. European Journal of Operational Research, 168(3), 798-810.
Huang, X. (2006). Credibility-based Chance-constrained Integer Programming Models for Capital Budgeting with Fuzzy Parameters. Information Sciences, 176(18), 2698-2712.
Juang, C. F., & Lee, C. I. (2007). A Fuzzified Neural Fuzzy Inference Network for Handling both Linguistic and Numerical Information Simultaneously. Neurocomputing, 71(1), 342-352.
Kao, C., & Liu, S. T. (1999). Competitiveness of manufacturing firms: An application of fuzzy-weighted average. IEEE Transactions on Systems, Man and Cybernetics, 29, 661-667.
Kao, C., & Liu, S. T. (2001). Fractional programming approach to fuzzy weighted average. Fuzzy Sets and Systems, 120, 435-444.
Kaufman, A., & Gupta, M. M. (1991). Introduction to Fuzzy Arithmetic. Van Nostrand Reinhold, New York.
Kaufmann, A., & Gupta, M. M. (1988). Fuzzy Mathematical Models in Engineering and Management Science. Amsterdam: North-Holland.
Keresztfalvi, T. (1993). Operations on fuzzy numbers extended by Yager’s family of t-norm. In: H. Bandemer (Ed.). Modelling Uncertain Data, Mathematical Research, 88, 163-167.
Klir, G. J. (1997). Fuzzy arithmetic with requisite constraints. Fuzzy Sets and Systems, 91, 165-175.
Klir, G. J., & Yuan, B. (1995). Fuzzy Sets and Fuzzy Logic Theory and Applications. Prentice Hall International, New Jersey.
Kosheleva, O., Cabrera, S. D., Gibson, G. A., & Koshelev, M. (1997). Fast implementations of fuzzy arithmetic operations using fast Fourier transform (FFT). Fuzzy Sets and Systems, 91, 269-277.
Kwong, C. K., Chen, Y., Chan, K. Y., & Wong, H. (2008). The Hybrid Fuzzy Least-Squares Regression Approach to Modeling Manufacturing Processes. IEEE Transactions On Fuzzy Systems, 16 (3), 644-651.
Lee, D. H. & Park, D. (1997). An efficient algorithm for fuzzy weighted average. Fuzzy sets and systems, 87, 39-45.
Lee, H. M., Lee, S. Y., Lee, T. Y., & Chen, J. J. (2003). A new algorithm forapplying fuzzy set theory to evaluate the rate of aggregative risk in software development. Information Sciences, 153, 177
Lee, J. J., Hong, D. H., & Hwang, S. Y. (1998). A learning algorithm of fuzzy neural networks using a shape preserving operation. Journal of Electrical Engine Information Science, 3, 131-138.
Lee, L. W., & Chen, S. M. (2008). Fuzzy Risk Analysis Based on Fuzzy Numbers with Different Shapes and Different Deviations. Expert Systems With Applications, 34(4), 2763-2771.
Leou, R. C., & Lu, C. N. (1996). Improving feeder voltage calculation results with telemetered data. IEEE Transactions on power delivery, 11, 1914-1920.
Liao, Z., & Rittscher, J. (2007). A multi-objective supplier selection model under stochastic demand conditions. International Journal of Production Economics, 105, 150-159.
Lin, C. T., Chiu, H., & Chu, P. Y. (2006). Agility Index in the Supply Chain. International Journal of Production Economics, 100(2), 285-299.
Lin, C. T., Duh, F. B., & Liu, D. J. (2002). A neural fuzzy network for word information processing. Fuzzy Sets and Systems, 127, 37-48.
Lin, K. P., Chang, P. T., & Hung, K. C. (2008). Vendor Managed Inventory Dynamics Using the Weakest t-Norm Based on Fuzzy Number Arithmetic Operations. The 3rd International Conference on Innovative Computing Information and Control, 46-49.
Lin, K. P., Chang, P. T., Hung, K. C., & Pai, P. F. (2010). A Simulation of Vendor Managed Inventory Model Using Fuzzy Arithmetic Operations with Genetic Algorithms. Expert Systems with Applications, 37(3), 2571-2579.
Lin, Z. C., & Chang, H. (1996). Application of fuzzy set theory and back-propagation neural networks in progressive die design. Journal of Manufacturing Systems, 15, 268-281.
Liou, T. S., & Wang, M. J. J. (1992). Fuzzy weighted average: An improved algorithm. Fuzzy Sets and Systems, 49, 307-315.
Liu, F. H. F., & Hai, H. L. (2005). The voting analytic hierarchy process method for selecting supplier. International Journal of Production Economics, 97, 308-317.
Mabuchi, S. (1988). An approach to the comparison of fuzzy subsets with an α-cut dependent index. IEEE Transactions on Systems. Man and Cybernetics, 18, 264-272.
Mesiar, R. (1997). Shape preserving additions of fuzzy intervals. Fuzzy Sets and Systems, 86, 73-78.
Mizumoto, M., & Tanaka, K. (1976). The four operations of arithmetic on fuzzy numbers. Systems Computers Controls, 7, 73-81.
Moon, J. H., & Kang, C. S. (2001). Application of fuzzy decision making method to the evaluation of spent fuel storage options. Progress in Nuclear Energy, 39,345-351.
Moore, R. E. (1966). Interval Analysis. Englewood Cliffs, NJ: Prentice Hall. NAFIPS, New Frontiers in Fuzzy Logic and Soft Computing, 237-244.
Nahmias, S. (1978). Fuzzy variables. Fuzzy Sets and Systems, 1, 97-111.
Ngai, E. W. T., & Wat, F. K. T. (2005). Fuzzy Decision Support System for Risk Analysis in E-commerce Development. Decision Support Systems, 40(2), 235-255.
Oussalah, M. (2002). On the compatibility between defuzzification and fuzzy arithmetic operations. Fuzzy Sets and Systems, 128, 247-260.
Puig, V., Saludes, J., & Quevedo, J. (2008). Simulation of Discrete Linear Time-invariant Fuzzy Dynamic Systems. Fuzzy Sets and Systems, 159(7), 787-803.
Stevenson, W. J. (1999). Production Operation Management. Irwin/McGraw-Hill Companies, 5th Edition.
Talluri, S. (2002). A buyer-seller game model for selection and negotiation of purchasing bids. European Journal of Operational Research, 143, 171-180.
Tee, A. B., & Bowman, M. D. (1991). Bridge condition assessment using fuzzy weighted averages. Civil Engineering Systems, 8, 49-57.
Uehara, K., & Hirota, K. (1996). Fuzzy inference based on a weighted average of fuzzy sets and its application to ATM network control. In North American Fuzzy Information Processing Society - NAFIPS, New Frontiers in Fuzzy Logic and Soft Computing, 237-244.
Vakili-Ardebili, A., & Boussabaine, A. H. (2007). Application of Fuzzy Techniques to Develop an Assessment Framework for Building Design Eco-drivers. Building and Environment, 42(11), 3785-3800.
Vanegas, L. V., & Labib, A. W. (2001). Application of new fuzzy-weighted average (NFWA) method to engineering design evaluation. International Journal of Production Research, 39, 1147-1162.
Victor, P., Vroman, A., Deschrijver, G., & Kerre, E. E. (2009). Real-Time Constrained Fuzzy Arithmetic. IEEE Transactions On Fuzzy Systems, 17 (3), 630-640.
Vujošević, M., Petrović, D., & Petrović, R. (1996). EOQ formula when inventory cost is fuzzy. International Journal of Production Economics, 45, 499-504.
Wagenknecht, M., Hampel, R., & Schneider, V. (2001). Computational aspects of fuzzy arithmetics based on Archimedean t-norms. Fuzzy Sets and Systems, 123, 49-62.
Wang, J., & Hwang, W. L., (2007). A Fuzzy Set Approach for R&D Portfolio Selection Using a Real Options Valuation Model. Omega, 35(3), 247-257.
Wang, M. J., & Chang, T. C. (1995). Tool steel materials selection under fuzzy environment. Fuzzy Sets and Systems, 72, 263-270.
Wang, W. J., & Chiu, C.-H. (1999). Entropy variation on the fuzzy numbers with arithmetic operations. Fuzzy Sets and Systems, 103, 443-455.
Wang, Y. M., & Elhag, T. M. S. (2007). A Fuzzy Group Decision Making Approach for Bridge Risk Assessment. Computers and Industrial Engineering, 53(1), 137-148.
Wang, Y. M., Luo, Y., & Hua, Z. S. (2007). A note on group decision-making based on concepts of ideal and anti-ideal points in a fuzzy environment. Mathematical and Computer Modelling, 46(9), 1256-1264.
Weber, C. A., Current, J. R., & Benton, W. C. (1991). Vendor selection criteria and methods. European Journal of Operational Research, 50(2), 2-18.
Weber, C. A., Current, J. R., & Benton, W. C. (1993). A multi-objective approach to vendor selection. European Journal of Operational Research, 68, 173-184.
Wei, C. C., Liang, G. S., & Wang, M. J. J. (2007). A Comprehensive Supply Chain Management Project Selection Framework under Fuzzy Environment. International Journal of Project Management, 25(6), 627-636.
Wilson, E. J. (1994). The relative importance of supplier selection criteria: a review and update. International Journal of Purchasing and Materials Management, 30(3), 35-41.
Wood, K. L., Otto, K. N., & Antonsson, E. K. (1992). Engineering design calculations with fuzzy parameters. Fuzzy Sets and Systems, 52, 1-20.
Yang, H. Q., Yao, H., & Jones, J. D. (1993). Calculating functions of fuzzy numbers. Fuzzy Sets and Systems, 55, 273-283.
Zadeh, L. A. (1965). Fuzzy Sets. Information and Control, 8, 338-353.
Zhou, M. (1998). Fuzzy logic and optimization models for implementing QFD. Computers & Industrial Engineering, 35, 237-240.
Zimmermann, H. J. (2001). Fuzzy Set Theory - and its Applications. Kluwer, Massachusertts.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 吳政達(2006)。少子化趨勢下國民中小學學校經濟規模政策之研究。教育政策論壇,9(1),23。
2. 李小芬(2001)。學校行銷。社教雙月刊,101,55-56。
3. 李雪莉(2007)。別當直昇機父母。天下雜誌,368。
4. 林佩蓉(2008)。提高「生產力」‧臺灣再加油。媽媽寶寶雜誌,11月號。2009年12月25日,取自http://www.mombaby.com.tw/articles.php?serialno=0903160002
5. 王玲、樓玉梅、范瑟珍、趙偉慈(2009)。臺灣地區97至145年人口推計及分析。臺灣經濟論衡,7(8),36-69。
6. 林孟儀,林妙玲(2006)。我的學校不見了—上學好難。遠見雜誌,243,148-199。
7. 施振典(2005)。學校行銷策略之探討。學校行政雙月刊,36,109-117。
8. 孫曉萍(1996)。日本教改啟示 教育在滋養思考的心靈。天下雜誌,180,182-187。
9. 涂肇慶、原新(2002)。用替代遷移方法對北京、上海和天津人口發展的類比研究。人口學刊,24,59-78。
10. 張明輝(2006)。創新管理與學校經營。教育研究月刊,145,41-49。
11. 張憲庭(2005a)。「少子化」對學校經營之影響與因應策略。國教新知,52(3),50-55。
12. 張憲庭(2005b)。少子化現象對學校經營管理之衝擊與因應之道。學校行政雙月刊,36,89-93。
13. 莫藜藜、賴珮玲(2004)。臺灣社會少子化與外籍配偶子女的問題初探。社區發展季刊,105,55-65。
14. 黃富順、張菀珍、黃錦山、魏惠娟(2005)。研訂我國老人教育政策之芻議。成人及終身教育學刊,4,89-118。高雄市:高雄師範大學。
15. 楊瑪利、徐仁全(2008)。莫斯科‧聖彼得堡 造富雙城計 金色俄羅斯。遠見雜誌,2008年5月號。2009年12月25日,取自http://mag.chinayes.com/MagazineBase/foresight/991/20080626125426306.shtml
 
系統版面圖檔 系統版面圖檔