|
[1] Kumar, B., Choudhury, D.R., and Kumar, A., ‘On the design of linear phase FIR integrators for midband frequencies’, IEEE Trans. Signal Process., 1996, 44, pp. 2391–2395. [2] Kumar, B., and Kumar, A., ‘FIR linear-phase approximations of frequency response 1/( jω) for maximal flatness at an arbitrary frequency , ( ), IEEE Trans. Signal Process., 1999, 47, pp. 1772–1775. [3] Al-Alaoui, M.A., ‘Novel digital integrator and differentiator’, Electron. Lett., 1993, 29, pp. 376–378. [4] Bihan, J.L., ‘Novel class of digital integrators and differentiators’, Electron. Lett., 1993, 29, pp. 971–973. [5] Papamarkos, N., and Chamzas, C., ‘A new approach for the design of digital integrators’, IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., 1996, 43, pp. 785–791. [6] Al-Alaoui, M.A., ‘Novel approach to designing digital differentiators’, Electron. Lett., 1992, 28, pp. 1376–1378. [7] Al-Alaoui, M.A., ‘Novel IIR differentiator from the Simpson integration rule’, IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., 1994, 41, pp. 186–187. [8] Al-Alaoui, M.A., ‘A class of second order integrators and lowpass differentiators’, IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., 1995, 42, pp. 220–223. [9] Laakso, T.I., Valimaki, V., Karjalainen, M., and Laine, U.K., ‘Splitting the unit delay: tool for fractional delay filter design’, IEEE Signal Process. Mag., 1996, 13, pp. 30–60. [10] David Kahaner,Cleve Moler,and Stephen Nash, ’Numerical Methods and Software’, Prentice Hall,Englewood Cliff,New Jersey, pp149, 1977. [11] Deng, T.B., and Lu, W.S., ‘Weighted least-squares method for designing variable fractional delay 2-D FIR filters’, IEEE Trans. Circuits Syst. II, Analog. Digit. Signal Process., 2000, 47, pp. 114–124. [12] Vesma, J., and Saramaki, T., ‘Design and properties of polynomialbased fractional delay filters’. Proc. Int. Symp. Circuits and Systems, May 2000, vol. 1, pp. 104–107. [13] Deng, T.B., ‘Discretization-free design of variable fractional-delay FIR filters’, IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., 2001, 48, pp. 637–647. [14] Tseng, C.C., ‘Design of 1-D and 2-D variable fractional delay allpass filters using weighted least-squares method’, IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., 2002, 49, pp. 1413–1422. [15] Tseng, C.C., ‘Eigenfilter approach for the design of variable fractional delay FIR and allpass filters’, IEE Proc., Vis. Image Signal Process., 2002, 149, pp. 297–303. [16] Deng, T.B., and Nakagawa, Y., ‘SVD-based design and new structures for variable fractional-delay digital filters’, IEEE Trans. Signal Process., 2004, 52, pp. 2513–2527. [17] Mathews, J.H., and Fink, K.D., ‘Numerical methods using MATLAB’, 4th, Prentice-Hall, 2004. [18]Lu, W.S., and Deng, T.B., ‘An improved weighted least-squares design for variable fractional delay FIR filters’, IEEE Trans. Circuits Syst. II, Analog. Digit. Signal Process., 1999, 46, pp. 1035–1040.
|