(54.236.58.220) 您好!臺灣時間:2021/03/05 05:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:曹家瑋
研究生(外文):Jia-Wei Cao
論文名稱:具磁分離奈米觸媒合成、鑑定及應用之研究
論文名稱(外文):Synthesis, characterization and application of magnetically separable nanozeolite
指導教授:許秀菱許秀菱引用關係羅希達
指導教授(外文):Rosslyn HsuRosilda Selvin
學位類別:碩士
校院名稱:龍華科技大學
系所名稱:工程技術研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:52
中文關鍵詞:四氧化三鐵超順磁性血紅蛋白奈米沸石 silicalite-1
外文關鍵詞:magnetitesuperparamagneticsilicalite-1hemoglobin
相關次數:
  • 被引用被引用:4
  • 點閱點閱:301
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:60
  • 收藏至我的研究室書目清單書目收藏:0
本研究合成出奈米級四氧化三鐵並與silicalite-1結合成複合材料,以血紅蛋白溶液的吸附了解其吸附行為。先以四種不同的四氧化三鐵製備方法,選出在水中分散效果最佳的,進行silicalite-1的合成,以XRD確認合成出的材料為四氧化三鐵,以TEM觀察其粒徑,並由VSM觀察四氧化三鐵的飽和磁化量及矯頑力。Silicalite-1是由溶膠-凝膠法合成出沸石前驅物,再經由熟化步驟成核,最後以水熱法長晶。四氧化三鐵在熟化前、熟化後、水熱法後加入至silicalite-1前驅物中,並改變四氧化三鐵︰silicalite-1比例為1︰3、1︰1、3︰1,以XRD觀察複合材料的結晶狀況,TEM觀察複合材料中四氧化三鐵的分佈位置,選出最佳條件的複合材料進行血紅蛋白吸附實驗。合成出的材料在溶液中可經由外加磁場加以回收,且經由VSM可確認為超順磁材料。血紅蛋白吸附實驗透過改變不同的血紅蛋白濃度,以求出複合材料的飽和吸附量,與文獻值相較,本實驗所合成出的複合材料飽和吸附量為178.03 mg/g,與文獻值148 mg/g相較高出許多。最後以Langmuir方程式模擬血紅蛋白吸附行為,得到參數證明為單層的物理吸附現象。
Zeolites, microporous crystalline silicates and aluminosilicates were found to be efficient heterogeneous catalyst . The decrease of zeolite crystal size to naoscale not only brings a large surface area for the interaction to the macromolecules but also makes the uniform and to the micrometer-sized ones, nanosized zeolites become more promising candidates for a variety of nonconventional applications, especially in bio-related fields. The present work aims at preparing zeolite nanocrystals combined with magnetite (Fe3O4) nanoparticles. In this work, a facile method for the rapid synthesis of zeolite nanocrystals combined with superparamagnetic magnetite nanoparticles is described. Four different methods for preparing magnetite nanocrystals are compared. The best materials, is fully-dispersible in water, which is used for making nanocomposite with zeolite nanocrystals and discussed here. In order to facilitate the mixing of nanoparticles, we have prepared hydrophilic nanocrystals of both zeolite and magnetite. The method described in the literature [1] was followed for the preparation of magnetite and silicalite-1 [2] nanoparticles. In a typical procedure, the silicalite-1/magnetite nanocomposite was prepared by mixing of hydrophilic silicalite-1 nanoparticles and magnetite nanoparticles followed by ageing (80˚C for 6 hrs) high temperature (175˚C for 6 hrs) hydrothermal method. The product was centrifuged at 6000 rpm or collected by using external magnetic field to extract the solids. The product was characterized for their structure by XRD, SEM, TEM, BET and the magnetic properties were investigated by vibrating sample magnetometry (VSM). The phase purity of the nanocomposite was confirmed using XRD. The broadening of the peaks is attributed to the small size of the nanocrystals. The particle size of zeolite nanocrystals combined with magnetite nanoparticles is in the range of 100 nm. Hysteresis of the magnetite nanoparticle was very small, indicating superparamagnetic behavior. The saturation magnetization of magnetite particles is 31emu/g at room temperature, which is smaller than that of bulk magnetite (90 emu/g) due to surface effect. Also, the saturation magnetization of silicalite-1/magnetite nanocomposite is 7 emu/g at room temperature, which is smaller than that of silicalite-1/magnetite nanocomposite (8.9 emu/g) reported in the literature. To study whether the nanocomposite would influence the interaction between zeolite nanocrystals and biomolecules, a hemoglobin adsorption experiment was carried out. It was found that the saturated adsorption amount of hemoglobin over the nanocomposite at pH 7.0 was 178.03 mg/g, which is higher than reported in the literature (148 mg/g) indicating that the nanocomposites have a reasonable adsorption capacity for biomolecules. A key factor for fabricating small magnetically separable nanozeolites crystals is the hydrophilic nature of the nanoparticles. The method presented here produces a target material of uniform sized and superparamagnetic behavior is suitable for bioapplications.
摘要 i
ABSTRACT ii
誌謝 iv
目錄 v
圖目錄 viii
表目錄 x
第一章 前言 1
1.1 前言 1
1.2 文獻回顧 1
1.2.1 奈米氧化鐵合成 1
1.2.2 磁性奈米粒子的應用 2
1.2.3 磁性多孔材料之應用 3
1.3 研究目的 6
第二章 原理 7
2.1 沸石 7
2.1.1 沸石合成 7
2.1.2 沸石簡介 7
2.2 四氧化三鐵簡介 9
2.3 磁性簡介及磁滯曲線 11
2.4 磁性材料於生醫方面的應用 12
2.5 血紅蛋白 14
2.6 吸附現象 15
2.6.1 固液吸附 15
2.6.2 吸附模式 16
第三章 實驗 18
3.1 藥品 18
3.2 儀器 19
3.3 實驗步驟 20
3.3.1 方法一之奈米四氧化三鐵 20
3.3.2 方法二之奈米四氧化三鐵 22
3.3.3 方法三之奈米四氧化三鐵 22
3.3.4 方法四之奈米四氧化三鐵 23
3.3.5 奈米四氧化三鐵粒子與沸石silicalite-1複合材料的合成 24
3.4 血紅蛋白的吸附 26
3.4.1 血紅蛋白的吸附檢量線 26
3.4.2 血紅蛋白的吸附 26
3.5 實驗設計 27
3.5.1 不同四氧化三鐵的製備 27
3.5.2 四氧化三鐵︰silicalite-1改變的實驗規劃 27
3.5.3 血紅蛋白的吸附實驗設計 28
第四章 結果與討論 29
4.1 四氧化三鐵 29
4.1.1 四氧化三鐵XRD分析 29
4.1.2 四氧化三鐵對水分散性分析 30
4.1.3 四氧化三鐵磁性分析 31
4.1.4 四氧化三鐵TEM分析 31
4.2 四氧化三鐵與silicalite-1複合材料 34
4.2.1 複合材料實驗結果 34
4.2.2 複合材料XRD分析 34
4.2.3 複合材料TEM、SEM分析 36
4.2.4 複合材料磁特性分析 40
4.2.5 複合材料比表面積比較 41
4.2.6 複合材料外加磁場回收實驗 41
4.3 複合材料血紅蛋白吸附 43
4.3.1 血紅蛋白溶液檢量線製作 43
4.3.2 Langmuir 方程式 44
4.3.3 血紅蛋白的吸附 45
第五章 結論 47
參考文獻 48
1.Molday R. S.; Mackenzie D.,Methods , “Immunospecific ferromagnetic iron-dextran reagents for the labeling and magnetic separation of cells,” Journal of Immunological Methods,1982,52,353。
2.Young Soo Kang, Subhash Risbud, John F. Rabolt,and Pieter Stroeve,” Synthesis and Characterization of Nanometer-Size Fe3O4 and ç-Fe2O3 Particles,” Chem. Mater. 1996, 8, 2209。
3.Kim D. K.,Ahang Y.,Voit W.; Rao K. V.,Muhammed M. J.,Magn. Magn. Mat, “Synthesis and characterization of surfactant-coated superparamagnetic monodispersed iron oxide nanoparticles,” Journal of Magnetism and Magnetic Materials,2001,225,30。
4.Hyeon T.,Lee S. S.,Park J.,Chung Y.,Na H,B J. Am. ,Chem. Soc., “Synthesis of Highly Crystalline and Monodisperse Maghemite Nanocrystallites without a Size-Selection Process,“J. Am. Chem. Soc.,2001,123,12798。
5.Sun S., Zeng H. ,J Am. , “Size-Controlled Synthesis of Magnetite Nanoparticles, “J. AM. CHEM. SOC.,2002,124, 8204。
6.Dipak Maity, Shi-Guang Choo, Jiabao Yi, Jun Ding, Jun Min Xue., ,” Synthesis of magnetite nanoparticles via a solvent-free thermal decomposition route,” Journal of Magnetism and Magnetic Materials,2009, 321,1256。
7.Sung-Jin Bae , Ji-Ae Park , Jae-Jun Lee, Gang-Ho Lee, Tae-Jeong Kimd,Done-Sik Yoo, Yongmin Chang, “Ultrasmall iron oxide nanoparticles: Synthesis, physicochemical, and magnetic properties,” Current Applied Physics 9 ,2009,S19。
8.Peter Majewski,Benjamin Thierry,” Functionalized Magnetite Nanoparticles—Synthesis,Properties, and Bio-Applications,” Critical Reviews in Solid State and Materials Sciences, 2007,3-4, 203。
9.H.T. Song, J.S. Choi, Y.M. Huh, S. Kim, Y.w Jun, J.S. Suh, J. Cheon, “Surface Modulation of Magnetic Nanocrystals in the Development of Highly Efficient Magnetic Resonance Probes for Intracellular Labeling ,“Journal of the American Chemical Society,2005,127, 28,9992。
10.S. Sieben, C. Bergemann, A. Lubbe, B. Brockmann, D. Rescheleit, “Comparison of di!erent particles and methods for magnetic isolation of circulating tumor cells, “Journal of Magnetism and Magnetic Materials,2001,225 ,1-2, 175。
11.A. Petri-Fink, M. Chastellain, L. Juillerat-Jeanneret, A. Ferrari, H. Hofmann, “Development of functionalized superparamagnetic iron oxide nanoparticles for interaction with human cancer cells,” Biomaterials ,2005,26 , 2685。
12.H. Lee, E. Lee, D.K. Kim, N.K. Jang, Y.Y. Jeong, S. Jon, “Antibiofouling Polymer-Coated Superparamagnetic Iron Oxide Nanoparticles as Potential Magnetic Resonance Contrast Agents for in Vivo Cancer Imaging,” Journal of the American Chemical Society ,2006,128,22,7383。
13.M. Kumagai, Y. Imai, T. Nakamura, Y. Yamasaki, M. Sekino, S. Ueno, K. Hanaoka, K. Kikuchi, T. Nagano,E. Kaneko, K. Shimokado, K. Kataoka,” Iron hydroxide nanoparticles coated with poly(ethylene glycol)-poly(aspartic acid) block copolymer as novel magnetic resonance contrast agents for in vivo cancer imaging .“Colloids and Surfaces B: Biointerfaces,2007,56 , 174。
14.T. Neuberger, B. Schopf, H. Hofmann, M. Hofmann, B. von Rechenberg, “Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system,” Journal of Magnetism and Magnetic Materials,2005,293, 483。
15.Zbigniew Surowiec , Marek Wiertel, Mieczysław Budzyn ski, Jan Sarzynski, Jacek Goworek, “Magnetite nanowires in MCM-41 type mesoporous silica templates,” journal of Non-Crystalline Solids,2008,354,4271。
16.J. Matos, J. Laine, J.M. Herrmann, “Synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon,”Appl.Catal. B: Environmental,1998,18, 281。
17.E. Carpio, P. Zuniga, S. Ponce, J. Solis, J. Rodriguez, W. Estrada, ”Photocatalytic degradation of phenol using TiO2 nanocrystals supported on activated carbon” J. Mol. Catal. A,2005,228,293。
18.S. Rana, J. Rawat, R.D.K. Misra, “Anti-microbial active composite nanoparticles with magnetic core and photocatalytic shell: TiO2–NiFe2O4 biomaterial system ,“Acta Biomaterialia,2005,1, 691。
19.S. Rana, R.S. Srivastava, M.M. Sorensson, R.D.K. Misra, “Synthesis and characterization of nanoparticles with magnetic core and photocatalytic shell: Anatase TiO2–NiFe2O4 system .“Mater. Sci. Eng. B,2005,119, 144。
20.J. Rawat, S. Rana, R. Srivastava, R.D.K. Misra, “Antimicrobial activity of composite nanoparticles consisting of titania photocatalytic shell and nickel ferrite magnetic core,” Mater. Sci. Eng C, 2007, 27, 540。
21.Yanhui Aoa, Jingjing Xua, Xunwei Shenb,Degang Fua, Chunwei Yuan, “Magnetically separable composite photocatalyst with enhanced photocatalytic activity,” Journal of Hazardous Materials,2008,160, 295。
22.F. Chen, Y. Xie, J. Zhao, G. Lu, P,”Photocatalystic degradation of dyes on a magnetically separated photocatalyst under visible and UV irradiation,” Chemosphere,2001,44, 1159。
23.Tarek A. Gad-Allah, Kyoko Fujimura, Shigeru Kato, Shigeo Satokawa, Toshinori Kojima” Preparation and characterization of magnetically separable photocatalyst (TiO2/SiO2/Fe3O4): Effect of carbon coating and calcination temperature,” Journal of Hazardous Materials,2005,154,572。
24.Sun ZH, Wang LF, Liu PP, Wang SC, Sun B, Jiang DZ.,” Magnetically Motive Porous Sphere Composite and Its Excellent Properties for the Removal of Pollutants in Water by Adsorption and Desorption Cycles,” Adv Mater ,2006, 18,15, 1968。
25.Jinwoo Lee, Sunmi Jin, Yosun Hwang, Je-Geun Park,“ Simple synthesis of mesoporous carbon with magnetic nanoparticles embedded in carbon rods,” Carbon,2005,43,2536。
26.Da-Wei Wang, Feng Li, Gao Qing Lu, Hui-Ming Cheng,“Synthesis and dye separation performance of ferromagenetic hierarchical porous carbon,” Carbon,2008,46,1593。
27.J.F. Bengoa,M.V. Cagnoli,N.G. Gallegos,A.M. Alvarez,L.V. Mogni,M.S. Moreno,S.G. Marchetti,” Iron oxide nanoparticles inside the MCM-41 channels: Study of the structural stability of the support,” Microporous and Mesoporous Materials,2005,84, 153。
28.Wei Shan, Tao Yu, Bo Wang, Junkai Hu, Yahong Zhang,Xiaoyan Wang, and Yi Tang, “Magnetically Separable Nanozeolites: Promising Candidates for Bio-Applications,” Chemistry of material,2006,18, 14。
29.徐政業,粒徑均一之分散 silicalite-1奈米結晶製備與鑑定,國立中央大學,碩士論文2005。
30.“hemoglobin product information,” sigma,1996
31.陳寶森,奈米沸石TS-1之合成及其特性分析,龍華科技大學,碩士論文2007。
32.Xiaoxin Chen, Wenfu Yan, Xuejing Cao, Jihong Yu, Ruren Xu, “Fabrication of silicalite-1 crystals with tunable aspect ratios by microwave-assisted solvothermal synthesis,” Microporous and Mesoporous Materials , 2009, 119, 217。
33.Shouhu Xuan, Lingyun Hao, Wanquan Jiang, Xinglong Gong,Yuan Hua,Zuyao Chenb, “Fabrication of spindle Fe2O3 polypyrrole core/shell particles by surface-modified hematite templating and conversion to spindle polypyrrole capsules and carbon capsules “2007, Journal of Magnetism and Magnetic Materials ,308,p.p.210–213。
34.維基百科,血紅蛋白結構圖,http://upload.wikimedia.org/wikipedia/commons/1/19/Hemoglobin.jpg
35.維基百科,血紅素分子模型,http://upload.wikimedia.org/wikipedia/zh/d/d7/Homo.jpg
36.Langmuir isotherm, http://water.me.vccs.edu/math/langmuir.html。
37.林禹妝,酪胺酸酵素改質幾丁聚醣在化工廢水處理程序上之應用,國立中央大學,碩士論文2003。
38.林宏育.”相對濕度對活性炭吸附甲基乙基酮及甲苯雙成分有機蒸汽的影響探討,”長庚大學化工與材料工程系碩士論文,2001。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔