(44.192.112.123) 您好!臺灣時間:2021/03/06 07:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張智傑
研究生(外文):Chih-Chieh Chang
論文名稱:氮化鋁陶瓷性質之研究
論文名稱(外文):Study on Aluminium Nitride Ceramics Properties
指導教授:翁文彬翁文彬引用關係
指導教授(外文):Wen-Ping,Weng
學位類別:碩士
校院名稱:龍華科技大學
系所名稱:工程技術研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:57
中文關鍵詞:韋伯模數破壞強度熱傳導率抗濕水解氮化鋁
外文關鍵詞:ability to resist hydrolysisAluminium Nitridefracture toughnessWeibull modulusmicro-hardnes
相關次數:
  • 被引用被引用:3
  • 點閱點閱:497
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:73
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用的市售氮化鋁粉體其代號分別為TY、TWN、TK-E、TK-H以及TK-HT,檢測粉末之水解性質。
實驗結果顯示: 抗水解能力TY>TK-HT>TK-E>TK-H>TWN,為解決氮化鋁粉末水解問題,燒結出緻密且熱傳導性佳之氮化鋁基板,將市售氮化鋁粉末,分別在850、950及1050℃ 通入流動氧氣持溫時間分別為1~4 hr,在氮化鋁粉末表面形成氧化鋁層(Al2O3 )以抵抗水解,發現TK-H粉末經1050℃,持溫4小時,在60℃持續4小時抗濕水解檢測,pH值由原先10.3降為8.08,明顯提高抗水解能力,其氧化層平均厚度經由氮化鋁粉末重量增加率15.3%,計算推估約為130 nm。
另將TK-HT 粉末經乾壓(1 ton/cm2) 成形與市售刮刀成形生胚,經1800及1850℃、持溫3小時, 測量密度及熱傳導率,實驗說明:1850℃燒結3hr之乾壓成形試片燒結密度(3.34 g/cm3)高於刮刀成形(3.25 g/cm3),而乾壓試片之熱傳導率(191.82 w/m‧k)也高於刮刀試片(159.32 w/m‧k);以相同乾壓試片,其在1850℃燒結密度約高於1800℃(3.31 g/cm3),熱傳導率也略高於1800℃ (187.15 w/m.k)。
TK-HT 乾壓試片(70x10.8x3 mm),經1800℃燒結3 hr,施以三點抗彎強度(外跨距為30 mm,十字頭施壓速率為1.0 mm/min)及微硬度、破壞韌性(CNS 3299-4)測試,其平均破壞強度285.09 Mpa,韋伯模數10.87。微硬度為9.43 GPa,破壞韌性為11.66 MPa.m1/2 , 低強度氮化鋁(σ=219 MPa)試片之破壞源經SEM 分析為大晶粒(10 um)所造成。
In this study, five commercial aluminum nitride powders code-named TY, TWN, TK-E, TK-H and TK-HT respectively, are used in hydrolysis tests.
The results show the order of the ability to resist hydrolysis: TY> TK-HT> TK-E> TK-H> TWN. The problem of powder hydrolysis is resolved by sintering the powders into compact ceramic substrates with good thermal conductivities - temperatures are set at 850 , 950 and 1050 ℃ respectively with oxygen flow passing for 1 ~ 4 hours. A layer of alumina (Al2O3) - an important role in resisting hydrolysis - is formed on top of aluminum nitride powder. With the 1050 ℃-sintered-for-four-hours TK-H immersed in water at 60 ℃ for four hours, the pH only increases to 8.08, much less than 10.3 as in the case of unsintered TK-H. The alumina layer thickness of sintered TK-H is estimated to be around 130 nm.
The densities and thermal conductivities of 1800 ℃- and 1850 ℃-dry-pressed (1 ton/cm2) TK-HT ceramic are measured and compared to those of the commercial tape-casting ceramic. Both the densities and thermal conductivities of dry-pressed ceramic are higher than those of commercial one. As for the influence of dry-pressed temperature, both the densities and thermal conductivities of 1850 ℃-dry-pressed TK-HT ceramic are higher than those of 1800 ℃-dry-pressed one.
The strength tests for 1800 ℃-dry-pressed TK-HT specimen show: average failure strength 285.09 Mpa, Weibull modulus 10.87, micro-hardness 9.43 GPa, fracture toughness 11.66 MPa.m1 / 2. The SEM analysis of low-density aluminum nitride (σ = 219 MPa) shows that the destruction of specimens are caused by large grain (10um).
摘要 i
Abstract iii
誌謝 v
目錄 vi
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
第二章 理論基礎 3
2.1 氮化鋁特性 3
2.2 抗濕處理 6
2.2.1 熱傳導機構 8
2.2.2 研究回顧 11
2.3 液相燒結 13
2.3.1液相燒結原理 13
2.3.2 氧化釔助燒劑對氮化鋁之影響 15
2.4 韋伯統計分析 19
第三章 實驗方法與步驟 21
3.1實驗藥品 21
3.2實驗設備 21
3.3實驗流程 23
3.3.1氮化鋁粉末之研究 23
3.3.2氮化鋁塊材之研究 24
3.4粉末抗濕處理 25
3.4.1抗濕水解檢測 25
3.4.2高溫氧氣氛抗濕處理 25
3.4.3計算氧化層平均厚度 25
3.5 基板製作與分析 28
3.5.1高溫燒結 28
3.5.2熱傳導分析 28
3.5.3微硬度試驗 29
3.5.4破壞韌性 30
3.5.5密度 30
3.5.6線收縮率 31
3.6 微結構分析 31
3.6.1 SEM分析及EDS分析 31
3.6.2 相分析 32
第四章 結果與討論 33
4.1 高溫氧氣氛抗濕處理 33
4.1.1 抗濕水解檢測 33
4.1.2 溫度與持溫時間之影響 35
4.1.3 氧化層平均厚度 38
4.2 高溫燒結對氮化鋁之影響 40
4.2.1 熱傳導分析 40
4.2.2 密度 41
4.2.3 維氏硬度測量 41
4.2.4 破壞強度測量 42
4.3 微結構分析 43
4.3.1 氮化鋁粉末與塊材之SEM 43
4.3.2 氮化鋁破壞面之SEM 48
4.3.3 氮化鋁粉末之XRD 51
第五章 結論 52
參考文獻 54
汪建民, 陶瓷技術手冊, 中華民國科技發展協進會, p.781-783, (1994)。

黃昌偉,“陶瓷材料之熱性分析”,精密陶瓷特性與檢測分析,p10.1-10.54. (1999)。

楊昀達,“高緻密性AlN 燒結體之製備及其熱傳導性質之研究 ,成功大學碩士論文93 年畢業。

Anthony A. Gallo, Charles S. Bischof, Kevin E. Howard, Stephen A. Anderson, “Moisture Resistant Aluminum Nitride Filler for High Thermal Conductivity Microelectronic Molding Compound,”1996 Electronic Component and Technology Conference, p.335-342, (1996).
E. Man, F. Yan, Ame. Cera. Soc. Inc., Vol.26, p.19-54, (1994).

E. K. Chang, J. Mat. Sci. lett., Vol.15, p.1580-1581, (1996).

Freddy Y.C. Boey, X.L. Song, C.Y. Yue, and Q. Zhao, Journal of Materials Processing Technology, 89-90, p.437-439, (1999).

F. J.-M. Haussonne, Mater. Manuf. Processes, 10, 717 (1995).

G. A. Slack, R. A. Tanzilli,R. O. Pohl and J. W.Vandersande,J. Phys. Chem. Soli., Vol.48, p.641-642, (1987).

G. A. Slack, R. A. Tanzilli,R. O. Pohl and J. W.Vandersande,J. Phys. Chem. Soli., Vol.48, p.641-647, (1987).

G. A. Slack, “Non-metallic Crystals With High Thermal Conductivity, J. Phys. Chem. Solids 34, 321 ( 1973 ).

G. Selvaduray, and L. Sheet, Mater. Sci. Technol., 9, 463 (1993).

G. Gorzawski, M. Sternitzke, W. F. Müller, A. Bergerc and G. Mullerc,“Oxygen Enrichment at Inversion Domain Boundaries in Aluminium Nitride Influence on Thermal Conductivity,” J. Eur. Cera. Soc, 15,95-99, (1995).

Howard, Kevin E. “Method of Making Moisture Resistant Aluminium Nitride Powder and Powder Produced Thereby, ”U.S. Patent, 5234712,Aug. 10, (1993).

Incropera, Dewitt,“Fundamentals of Heat and Mass Transfer 4/e” (2000).

J.W. Bae, W. Kim, S.H. Cho, and S.H. Lee, Journal of Material Science,35, p.5907-1203, (2000).

J. H. Harris, “Sintered Aluminum Nitride Ceramics for High-Powder Electronic Applications”, JOM, 56 (1998).

K.E. Gonsalves, X. Chen,and M.I. Baraton, Nanostructured Materials, Vol. 9, p.181-184, (1997).

K. Tsugeki, S. Yan,H. Maeda, K. Kusakabe, and S. Morooka,“Silica coating of aluminum nitride particales by radio-frequency plasma chemical vapour deposition”,J.Mater. Sci. Lett., 13, p.43-45, (1994).

K. Mitsuo, U. Fumio, J. Am. Cera. Soc., Vol.77, p.1991-2000, (2004).

K. Watari, K. Ishizaki, and T. Fujikawa, “Thermal Conduction Mechanism of Aluminium Nitride Ceramics,” J. Mater. Sci., 27,2627-30, (1992).

K. Watari, Hae J. Hwang, Motohiro Toriyama, and Shuze Kanzaki“Low-Temperature Sintering and High Thermal Conductivity o fYLiO2-Doped AlN Ceramics,” J. Am. Ceram. Soc, 79[7], 1979-81, (1996).

Laurel M. Sheppard, Ceramic Bulletin, Vol.69, No.11, p.1801-1812, (1990).

L. A. Qiao, H. P. Zhou, H. Xue, S. Wang,“Effect of Y2O3 on Low Temperature Sintering and Thermal Conductivity of AlN Ceramics,”J. Eur. Cera. Soc, 23, 61-67, (2003).

L. Qiaoa, H. P. Zhouaa, and R. L. Fubb , “Thermal conductivity of AlN ceramics sintered with CaF2 and YF3,” Ceramics International 29,893–896, (2003).

M.P.Borom,G . A. Slack and J.W. Szymascex, Ceram. Bull.,Vol.51,p.11 (1972).

M. Egashira, Y. Shimizu, S.Takatsuki,“Chemical Surface Treatments of Aluminium Nitride Powder Suppressing Its Reativity with Water”, J. Mater. Sci. Lett., 10, p.994-996, (1991).

M. Alper, Chemical and Metallurgical Products Towanda, Pennsylvania, p.12-29, (1995).
M. Bengisu “Engineering Ceramics” Springer-Verlag Berlin Heidelberg 2001 Ch 4.

N. Kuramoto, H.Taniguchi, and I. Aso, Am.ceram.Soc.Bull.,68[4], p.883-887, (1989).

R. M. German, “Liquid Phase Sintering” Plenum Press Inc. 6-8, ( 1985).

S. Nguyen, D. Dobuzinsky, D. Harmon, R. Gleason, and S.Fridmann, J.Electrochem. Soc., 137, p.2209, (1990).

S. FUKUMOTO, T. HOOKABE, H. TSUBAKINO, "Hydrolysis behavior of aluminum nitride in various solutions"JOURNAL OF MATERIALS SCIENCE 35, p 2743 – 2748, (2000).

W.Kim, J.W. Bae, I.D. Choi, and Y.S. Kim, Polymer Engineering and Science, Vol.39, no.4, p.756-765, (1999).

William D. Callister, JR.,“Materials Science and Emgineering an Introduction”4th, ed., (1999).

Weon-Ju Kim, Do Kyung Kim, and Chong Hee Kim, “Coating of Al2O3 Additive on AlN powder and Its Effect on the Thermal Conductivity of AlN Ceramics”, Journal of Materials Synthesis and Processing, 3, 1, 37 (1995).

W. D. Kingery, M. D. Marasimham, “Densification During Sintering in Presence of a Liquid Phase”, J. Appl. Phys. 31[3], 307 (1959).

X. R. Xu, H. Zhuang, W. L. Li, S. Xu, B. L. Zhang, and X. Fu, “Improving thermal conductivity of Sm2O3-doped AlN ceramics by changing sintering conditions,”Materials Science and Engineering A342, 104-108, (2003).

Yamada, "Heat-reducing grease composition and semiconductor device using the same", U.S. Patent, 5981641, Nov. 9, (1999).

Yamada,"Aluminum nitride powder and thermally conductive grease composition using the same",U.S. Patent, 6136758, Oct. 24, (2000).

Y. Q. Li, T. Qiu, J. Xu, and X. C. He,“Surface Modification of Aluminium Nitride Powder”, J.Mater. Sci. Lett.,15, p.1758-1761, (1996).

Y. Q. Li, T. Qiu, J. Xu, and X. C. He,“Effect of Thermal Oxidation Treatment in Air on The Hydrolysis of Air Powder”, Mater. Res. Bul., Vol. 32, No. 9, p.1173-1179, (1997).

Y. Yu, J. Euro. Cera. Soc.,Vol.22, p.247-252, (2002).

Y. C. Liu, H. P. Zhou, Y. Wu, and L. Qiao, “Improving Thermal Conductivity of Aluminium Nitride Ceramics by Refining Microstructure,” Mater. Lett. 43, 114–117, (2000).

Y. D. Yua, A. M. Hundereb, R. Hoiera, R. E. Dunin-Borkowskic, M. A. Einarsrudd, “Microstructural characterization and microstructural effects on the thermal conductivity of AlN(Y2O3) ceramics,” J. Eur Cera. Soc, 22, 247-252, (2002).

http://www.ntktech.com/
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔