|
中文文獻 1. 古永嘉和許世璋,2009,應用狀態空間模型與基因類神經網路濾波技術於風 險值預測之研究:以台股指數與台指期貨為例,台大管理論叢,20(2), pp.307-342。 2. 杜金龍,2002,技術指標在台灣股市應用之訣竅,初版,臺北市 : 財訊出版 : 聯豐書報總經銷。 3. 辛永森,2008,台灣股價指數期貨預測-平滑支撐向量迴歸與灰預測之應用, 國立台灣科技大學資訊管理系。 4. 陳國玄,2004,人工神經網路與統計方法應用於台灣上市電子類股價指數預 測與分類之研究,國立成功大學統計學系碩博士班。 5. 陳界榕,2009,應用兩階段預測方式於台指期貨之研究,輔仁大學資訊管理 學系。 6. 陳適宜,2009,基因類神經網路在臺股指數期貨之預測與蝶式交易策略研究, 國立台北大學企業管理學系。 7. 陳子安,2010,薄型晶圓片切割參數最佳化知研究-以蕭特基二極體為例,明 新科技大學企業管理研究所。 8. 葉青,2010,利用粗糙集合動態縮減集支援股市買賣決策,南台科技大學國際企 業系。 9. 蔡美枝,2010,應用級比檢驗建立擇股策略整合決策模型,朝陽科技大學財務金 融系。 10. 蔡承益,2007,使用SOM-SVR 混合型系統搭配屬性篩選模式應用於台灣指數 期貨預測,國立高雄第一科技大學資訊管理所。 11. 鄭家豪,2007,灰關聯雙移動平均線之應用研究-以股票市場及金屬期貨為例, 國立成功大學資源工程學系博士班。 英文文獻 1. Akbar, E., and Somayeh M., 2011, A genetic programming model to generate risk-adjusted technical trading rules in stock markets, Ecpert Systems with Applications, 38(7), pp.8438-8445. 2. Chantziara, T., and Skiadopoulos G., 2008, Can the dynamics of the term structure of petroleum futures be forecasted? Evidence from major markets, Energy Economics, 30(3), pp.962-985. 3. Chen, C.H., Chen T.L., and Wei L.Y., 2010, A hybrid model based on rough sets theory and gentic algorithms for stock price forecasting, Information Sciences, 180(9), pp.1610-1629. 4. Chen, T.S., Chen J., Liu C.H., and Guo Y.S., 2008, Hierarchical clustering investment portfolio - An example using the Taiex 50 stocks, Book Series: Series of Information and Management Sciences 7, pp.112-114. 5. Cuong, T. and Tuan D.P., 2009, Analysis of cardiac imaging data using decision tree based parallel genetic programming, Proceedings of 6th International Symposium on Image and Signal Processing and Analysis, pp.317-320. 6. Cinar, V., Oncan T., and Sural H., 2010, A genetic algorithm for the traveling salesman problem with pickup and delivery using depot removal and insertion moves, Lecture Notes in Computer Science, 60(25), pp.431-440. 7. Deng, Y., and Liu J., 2009, Feature selection based on mutual information for language recognition, Proceedings of The 2009 2nd International Congress on Image and Signal and signal processing, 1-9, pp.4319-4322. 8. Dunteman, G.H., 1994, Principal component analysis. In M. S. Lewis-Beek (Eds.), Factor analysis and related techniques, pp.157-245. Sara Miller McCune, CA: Sage Publications, Inc. 9. Fathi, H., and Afshar A., 2010, GA-based multi-objective optimization of finance-based construction project scheduling, Ksce Journal of Civil Engineering, 14(5), pp.627-638. 10. Ghoseiri, K., and Ghannadpour S.F., 2010, Multi-obective vehicle routing problem with time windows using goal programming and genetic algorithm, Applied Soft Computing, 10(4), pp.1096-1107. 11. Holland, J. H., 1975, Adaptation in natural and artificial systems, Ann Arbor, MI: The University of Michigan Press. 12. Huang, W.L., Chen L.Z., and Li G.J., 2002, Comprehensive application of factor analysis and hierarchical cluster analysis in evaluating the effect of FDI, Proceedings of 2002 International Conference on Management Science and Engineering, pp.1270-1274. 13. Hsu, L.Y., Horng S.J., Kao T.W., Chen Y. H., Run R.S., Chen R.J., Lai J.L., and Kuo I.H., 2010, Temperature prediction and TAIFEX forecasting based on fuzzy relationships and MTPSO techniques, Expert Systems with Applications: An International Journal, 37(4), pp.2756-2770. 14. Joseph, S., Sheriff and Ayers R., 2003, Intrusion detection: methods and system. part II, Information Management and computer security, 11(5), pp. 222-229. 15. Koza, J. R., 1992, Genetic programming - on the programming of computers by means of natural selection, Cambridge, MA. MIT Press. 16. Lee, H.S., Roh S., Park M.S., and Ryu H.G., 2010, Optimal option selection for finishing works of high-rise building, KSCE Journal of Civil Engineering, 14(5), pp.639-651. 17. Lin, S.W., Shiue Y.U., Chen S.C., and Cheng H.M., 2009, Applying enhanced data mining approaches in predicting bank performance: A case of Taiwanese commercial banks, Expert Systems with Applications, 36(9), pp.11543-11551. 18. Li, S.B., Pan W.J., Yang G.C., and Chen L.N., 2009, Optimization of 3G wireless network using genetic programming, Second International Symposium on computational intelligence and design, 2, pp.131-134. 19. Liu, H., Motoda H., 1998, Feature selection for knowledge discovery and data mining. Boston: Kluwer Academic Publishers. 20. Spearman, C., 1904, General intelligence, Objectively determined and measured, The American Journal of Psychology, 16(2), pp.201-293. 21. Pai, G.A.V., and Michel T., 2009, Evolutionary Optimization of Constrained k-means Clustered Assets for Diversification in Small Portfolios, IEEE Transactions on Evolutionary Computation, 13(5), pp.1030-1053. 22. Vasant, P., and Barsoum N., 2009, Hybrid simulated annealing and genetic algorithms for industrial production management problems, International Journal of Computational Methods, 7(2), pp.254-261. 23. Versace, M., Bhatt R., Hinds O., and Shiffer M., 2004, Predicting the exchange traded fund DIA with a combination of genetic algorithms and neural networks, Expert Systemswith Applications, 27(3), pp.417-425. 24. Xu, G.X., Shia B.C, Hsu Y.B., Shen P.C., and Chu K.H., 2009, To integrate text mining and artificial neural network to forecast gold futures price, International conference on new trends in information and service science, 1(2), pp.1014-1020. 25. Yang, G.P., Zhou G.T., Yin Y.L., and Yang X.K., 2010, K-means based fingerprint segmentation with sensor interoperability, Eurasip Journal on Advances in Signal Processing. 26. Zhao, X., Liu X., Hao X.Y., and Liu K.Y., 2009, An algorithm of feature selection and feature weighting adjustment based on Chinese Frame Net, Proceedings of The 2009 2nd International Congress on Image and Signal and signal processing, 1-9, pp.4300-4303.
|