(3.238.186.43) 您好!臺灣時間:2021/02/28 21:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:温旻學
研究生(外文):Min-Hsueh Wen
論文名稱:以脈衝雷射蒸鍍方式製作銅銦硒薄膜
論文名稱(外文):Investigation on Physical Properties of CuInSe2 Films Prepared by Pulsed Laser Deposition
指導教授:陳啟文陳啟文引用關係顧鴻壽顧鴻壽引用關係
指導教授(外文):Chii-Wen ChenHorng-Show Koo
學位類別:碩士
校院名稱:明新科技大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:100
中文關鍵詞:二硒化銅銦脈衝式雷射蒸鍍法三元化合物
外文關鍵詞:CuInSe2pulse laser deposition (PLD)compound
相關次數:
  • 被引用被引用:0
  • 點閱點閱:148
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究是以物理方式製備銅銦硒三元化合物之靶材,並使用脈衝式雷射蒸鍍法沈積銅銦硒(CISe)薄膜於鍍鉬和未鍍鉬(Mo)之玻璃與蘇打石灰玻璃(Soda Lime Glass)基板,以及對二硒化銅銦化合物薄膜進行450℃、500℃、550℃和600℃等不同基板溫度的沈積,經由此一研究而分析其製程條件對薄膜物理性質的影響。
由XRD量測得知,二硒化銅銦薄膜沉積於不同玻璃基板材料以及不同基板溫度,其結果顯示在基板溫度450℃以上以及鍍鉬和未鍍鉬的蘇打石灰玻璃基板上,二硒化銅銦薄膜的(112)特性峰值具有極強的優選化方位。從XRD量測分析可計算出二硒化銅銦薄膜之晶粒大小,而其晶粒大小是隨著溫度的增加而增加,換言之,高的基板溫度下沈積薄膜是有助於較大晶粒的成長以及較好結晶性的形成。
由電性量測結果得知,二硒化銅銦薄膜的電阻率是隨著溫度上升而有降低的趨勢。由霍爾效應量測結果得知,二硒化銅銦薄膜為p型導電型式,其載子濃度大約範圍為1.64×1019cm-3 ~2.3×1019cm-3,載子遷移率大約範圍為6.91~19.3 cm2V-1s-1。
由UV-VIS-NIR量測結果得知,二硒化銅銦薄膜蒸鍍於玻璃基板在不同的基板溫度,其薄膜厚度大約為450nm,由此可量測二硒化銅銦薄膜在可見光內(360nm~720nm)的光吸收率已超過80.0%,由此計算出其光吸收係數大約為5×10-4cm-1 ~ 1.8×10-5cm-1。二硒化銅銦薄膜蒸鍍於玻璃基板在450℃、500℃、550℃以及600℃等不同的基板溫度下,可計算出其光學能隙值約為0.92~0.97eV。
由實驗結果顯示,二硒化銅銦化合物薄膜沈積於不同基板材料以及500℃的基板溫度,其薄膜具有較好的結晶性和化學計量比例,此一特性有助於後續製作銅銦硒系太陽能電池之光吸收薄膜層。

In this study, the ternary CISe targets for PLD were prepared by the solid-state sintering, and the deposition of thin-film CISe on different substrate materials with and without Mo-coated layers was carried out by the pulsed laser deposition (PLD) process, which is a KrF excimer laser deposition system. The deposited thin films, on different substrates and various processing temperatures, of CISe were characterized by qualitative or/and quantitative measurements.
From X-ray diffraction patterns, the CISe thin films on soda lime glass substrates and at substrate temperature of 450oC, exhibited a highly preferred orientation along the (112) plane, showing the formation of chalcopyrite structure. The grain size of the resultant films increase with increasing substrate temperature, i.e. the films deposited at higher substrate temperature is beneficial to the growth of larger grain and the formation of better crystallinity.
The electrical resistivity of the prepared CuInSe2 films decreases with increasing substrate temperature, this maybe due to the increase in Cu/In ratio. From the Hall effect measurement, the CuInSe2 films shows a p-type conductivity behavior, the carrier concentration of 1.64×1019cm-3 ~2.3×1019cm-3, and the carrier mobility of 6.91~19.3 cm2V-1s-1.
The experimental results show that the CuInSe2 films, on various substrates, with better properties of crystallinity and stoichiometric ratio have been processed at substrate temperature of 500 ℃. This kind of film is suitable to be an absorber layer in the high-efficiency chalcopyrite-based thin film solar cell devices.

摘要...........................................................I
Abstract......................................................II
誌 謝........................................................III
目 錄.........................................................IV
表目錄........................................................VI
圖目錄.......................................................VII
第一章緒論.....................................................1
1.1 前言.......................................................1
1.2 發展現況與歷史背景.........................................2
1.3 CISe/CIGSe薄膜型太陽能電池的發展潛力.......................8
1.4 研究目的..................................................10
第二章文獻回顧與基本原理......................................11
2.1 太陽能電池之原理介紹......................................11
2.1.1 太陽能..................................................11
2.1.2 太陽能的輻射和吸收......................................12
2.1.3 太陽能電池之工作原理....................................14
2.1.4 太陽能電池之物理機制....................................16
2.1 二硒化銅銦薄膜............................................17
2.2.1 二硒化銅銦薄膜結構......................................17
2.2.2 二硒化銅銦薄膜之製備方法................................22
2.3 脈衝式雷射蒸鍍法..........................................24
2.3.1 脈衝式雷射蒸鍍原理......................................24
2.3.2 脈衝式雷射蒸鍍發展與歷史................................25
第三章實驗方法................................................27
3.1 製作流程..................................................27
3.2 實驗材料..................................................29
3.2.1 靶材材料................................................29
3.2.2 基板材料................................................29
3.3 製程設備..................................................30
3.4 製作二硒化銅銦化合物靶材..................................31
3.5 基板處理..................................................33
3.6 製作二硒化銅銦化合物薄膜..................................34
3.7 物性量測儀器..............................................35
3.7.1 表面輪廓儀..............................................35
3.7.2 X光繞射分析.............................................36
3.7.3 原子力顯微鏡............................................37
3.7.4 掃描式電子顯微鏡........................................39
3.7.5 能量散射光譜儀..........................................40
3.7.6 X光螢光光譜儀...........................................41
3.7.7 四點探針量測............................................42
3.7.8 霍爾效應量測............................................43
3.7.9 紫外光-可見光-紅外光光譜儀..............................44
第四章結果與論................................................45
4.1 二硒化銅銦化合物靶材的製作及其物性分析....................45
4.1.1 二硒化銅銦化合物靶材的結晶相及其晶體結構................45
4.1.2 二硒化銅銦化合物靶材的表面結構形態......................47
4.1.3 二硒化銅銦化合物靶材的化學計量組成分析..................48
4.2 二硒化銅銦化合物薄膜的製作及其物性分析....................49
4.2.1 二硒化銅銦化合物薄膜的結晶相及其晶體結構................49
4.2.2 二硒化銅銦化合物薄膜的表面結構形態......................55
4.2.3 二硒化銅銦化合物薄膜的化學計量組成分析..................62
4.2.4 二硒化銅銦化合物薄膜的電性分析..........................66
4.2.5 二硒化銅銦化合物薄膜的光譜特性..........................68
第五章結論....................................................77
參考文獻......................................................79

1.BP Statistical Review of World Energy, England, http://www.bp.com/, June 2010.
2.D. Lidgate, “Green energy ?”, Engineering science and education journal, Vol. 1, 1992, pp. 221-227.
3.莊嘉琛,太陽能工程-太陽電池篇,全華科技圖書, 民國92年。
4.Yang, J., et al., “Recent progress in amorphous silicon alloy leading to 13% stable cell efficiency”, 26th Photovoltaic Specialists Conference, 1997, pp. 563-568.
5.Ruud E. I. Schropp, “Present status of micro- and polycrystalline silicon solar cells made by hot-wire chemical vapor deposition”, Thin Solid Films, Vol. 451-452, 2004, pp. 455-465.
6.N. Romeo, A. Bosio, V. Canevari, A. Podestà, “Recent progress on CdTe/CdS thin film solar cells”, Solar Energy, Vol. 77, 2004, pp. 795-801.
7.Progress in photovoltaics: research and applications, Prog Photovolt Res, Appl. 2004, 12, pp. 39-45.
8.Wayne M. Campbell, Anthony K. Burrell, David L. Officer, Kenneth W. Jolley, ”Porphyrins as light harvesters in the dye-sensitised TiO2 solar cell”, Coordination Chemistry Reviews, Vol. 248, 2004, pp. 1363-1379.
9.Wanzhu Cai, Xiong Gong, Yong Cao, “Polymer solar cells: Recent development and possible routes for improvement in the performance”, Solar Energy Materials and Solar Cells, Vol. 94, 2010, pp. 114-127.
10.黃家華,CIGS太陽能電池技術發展趨勢,電子月刊,第14卷,第七期,2008年,第135頁。
11.Schock, H.W., “Thin films photovoltaics”, Applied Surface Science, 1996, pp. 606-616.
12.M. A. Green, physica E, 2002, 14, pp. 65.
13.W.G. Adams, R.E. Day, Proceedings of the Royal Society, A25, 1877, pp. 113.
14.J. Perlin, “From space to earth : The story of solar energy” Earthcan , 1999.
15.J. Hedstrom, H. Ohlsen, M. Bodegard, A. Kylner, L. Stolt, D. Hariskos, M. Ruch and H. W. Schock ,“ZnO/CdS/Cu(In,Ga)Se2 thin film solar cells with improved performance”, Proc. 23rd IEEE Photovoltaic Specialists Conference, 1993, pp. 364-371.
16.Ingrid Repins, MiGuel A. Contreras, Brian Egaas, Clay DeHart, John Schart, Craig L. Perkins, Boddy Tio and Rommel Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 Solar Cell with 81.2% Fill Factor”, Progress in Photovoltaics: Research and Applications, Vol.16, 2008, pp. 235-239.
17.M. powella, Zentrum fur Sonnenenergie-und Wasserstoff-Forschung Baden-Wurttemberg, Germany. www.pv-tech.org, Auguest 29th 2010.
18.Lawrence Kazmerski, National Renewable Energy Laboratory (NREL).
19.J. W. Chu and D. Honeman, “Degradation processes in polycrystalline copper indium diselenide photoelectrochemical cells”, Solar Cells, Vol. 31, 1991, pp. 197-201.
20.N. Kavcar, M. J. Carter and R. Hill, “Characterization of CuInSe2 thin films produced by thermal annealing of stacked elemental layers”, Solar Energy Materials and Solar Cells, Vol. 27, 1992, pp. 13-23.
21.Kazmerski, L. L. Hallerdt, M. Ireland, P. J. Mickelsen, R. A. Chen, W. S., “Optical properties and grain boundary effects in CuInSe2”, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, A1, 1983, pp. 395.
22.H. J. Moller, Semiconductors for Solar Cells, 1993.
23.Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering, John Wiley & Sone, Chap 3, 2003.
24.S. O. Kasap, Optoelectronics and Photonics: Principles and Practices, New Jersey, Prentice Hall, 2001.
25.J. L. Stone, “Photovoltaics: unlimited electrical energy from the sun”, Issue of Physics Today, 1993, pp. 1-7.
26.H. W. Schock, “Thin film photovoltaics”, Applied Surface Science, Vol. 92, 1996, pp. 606-617.
27.J.L. Shay, B. Tell, H.M. Kasper, L.M. Schiavone, “Electronic Structure of AgInSe2 and CuInSe2”, Physical Review Letters B7, 1973, pp. 4485-4490.
28.Robert W Birkmire, Erten Eser, “Polycrystalline thin film solar cell: Present status and future potential”, Annu Rev Mater Science, Vol. 27, 1997, pp. 625-653.
29.S. M. Wasim, “Transport properties of CuInSe2”, Solar Cells, Vol. 16, 1986, pp. 289.
30.H. Neumann, “Relation between electrical properties and composition in CuInSe2 single crystals”, Solar Cells, Vol.28, 1990, pp.301.
31.R. Noufi, R. Axton, C. Herrington, S. K. Deb, “Electronic properties versus composition of thin films of CulnSe2”, Applied Physics Letters, Vol. 45, 1984, pp. 668-670.
32.D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si”, Applied Physics Letters, Vol. 31, 1977, pp. 292-294.
33.H. W. Schock, “Thin film photovoltaics”, Applied Surface Science, Vol. 92, 1996, pp. 606-617.
34.R. A. Mickelsen and W. S. Chen, “High photocurrent polycrystalline thin-film CdS/CuInSe2 solar cell”, Applied Physics Letters, Vol. 36, 1980, pp. 371.
35.O. Volobujeva, M.Altosaar, J.Raudoja, E.Mellikov, M. Grossberg, L.Kaupmees, P.Barvinschi, "SEM analysis and selenization of Cu–In alloy films produced by co-sputtering of metals", Solar Energy Materials and Solar Cells, Vol.93, 2009, pp. 11-14.
36.K. Yoshino, T. Shimizu, A. Fukuyama, K. Maeda, P.J. Fons, A. Yamada, S. Niki, T. Ikari, “Temperature dependence of photoacoustic spectra in CuInSe2 thin films grown by molecular beam epitaxy”, Solar Energy Material Solar Cells, Vol. 50, 1998, pp. 127.
37.Brian Pamplin, R.S. Feigelson, “Spray pyrolysis of CuInSe2 and related ternary semiconducting compounds”, Thin Solid Films, Vol. 60, 1979, pp. 141-146.
38.陳銘堯,簡介脈衝雷射蒸鍍法,物理雙月刊,第15卷,第5期,1993年, 第669-673頁。
39.H. Dittrich, M. Klose, M. Brieger, R. Schaffler, H.W. Schock, "CuInSe2 thin film solar cells by pulsed laser deposition", Photovoltaic Specialists Conference, 1993, Conference Record of the Twenty Third IEEE, pp. 617-620.
40.J. Levoska, A. E. Hill, S. Leppavuori, O. Kusmartseva, R. D. Tomilnson, R.D. Pilkington, “Laser ablation deposition of CuInSe2 thin films on silicon and fused siluca”, Journal of Applied Physics, Vol. 32, 1993, pp. 43-44.
41.J. Levoska, S. Leppavuori, F. Wang, O. Kusmartseva, A. E. Hill, E. Ahmed, R. D. Tomlinson, R. D. Pikington, “Pulsed laser ablation deposition of CuInSe2 and CuIn1-x GaxSe2 thin films”, Physica Scripta, Vol. T54, 1994, pp. 244-247.
42.I. Taguchi, H. Ezumi, S. Keitoku, T. Tamaru, H. Osono, “Stress-Induced raman frequency shift in CuInSe2 thin films prepared by laser ablation”, Journal of Applied Physics, Vol. 34, 1995, pp. 135-137.
43.A. Yoshida, N. Tanahashi, T. Tanaka, Y. Demizu, Y. Yamamoto, T. Yamaguchi, "Preparation of CuInSe2 thin films with large grain by excimer laser ablation", Solar Energy Materials and Solar Cells, Vol. 50, 1998, pp. 7-12.
44.S. Kuranouchi, A. Yoshida, “Annealing effects of CuInSe2 films prepared by pulsed laser deposition”, Thin Solid Film, Vol. 343, 1999, pp. 123-136.
45.Yukio Yamamotoa, Toshiyuki Yamaguchib, Akira Yoshida, ”Preparation of CuIn(SXSe1-X)2 thin films by excimer laser ablation from binary compounds”, Thin Solid Films, Vol. 343, 1999, pp. 199-201.
46.P. Victor, J. Nagaraju, S.B. Krupanidhi, "Pulsed excimer laser ablated copper indium diselenide thin films", Solid State Communications, Vol. 116, 2000, pp. 649-653.
47.A. Tverjanovich, E.N. Borisov, E.S. Vasilieva, O.V. Tolochko, I.E. Vahhi, S. Bereznev, Yu. S. Tveryanovich, "CuInSe2 thin films deposited by UV laser ablation", Solar Energy Materials and Solar Cells, Vol. 90, 2006, pp. 3624-3632.
48.Paifeng Luo, Changfei Zhu, Guoshun Jiang, "Preparation of CuInSe2 thin films by pulsed laser deposition the Cu–In alloy precursor and vacuum selenization", Solid State Communications, Vol. 146, 2008, pp. 57-60.
49.A. Tverjanovich, S. Bereznev, E. N. Borisov, D. Kim, J. Kois, K. Laes, O.Volobujeva, A. Öpikb, E. Mellikov, Y. S. Tveryanovich, “Polycrystalline CuIn3Se5 thin film photoabsorber deposited by the pulsed laser deposition technique”, Proceedings of the Estonian Academy of Sciences, Vol. 58, 2009, pp.24-28.
50.D. H. Yeon, B. C. Mohanty, Y. H. Jo, Y. S. Cho, "Preparation and electrical properties of CuInSe2 thin films by pulsed laser deposition using excess Se targets", J Mater Res, Vol. 25, No. 10, 2010, pp. 1936-1942.
51.鄭信民,林麗娟,X光繞射應用簡介,工業材料雜誌,第181期,91年,第100~108頁。
52.Y.B.He, T. Krӓmer, A. Polity, R. Gr egor, W. Kriegseis, I. Ӧsterreicher, D. Hasselkamp, B.K. Meyer, “Preparation and characterization of highly (112)-oriented CuInS2 films deposited by a one-stage RF reactive sputtering process”, Thin Solid Films, Vol. 431-432, 2003, pp. 231-236.
53.L.S. Birks, Friedman, “Particle Size Determination from X-Ray Line Broadening”, Journal of Applied Physics, Vol. 16, 1946, pp. 687-692.
54.A.A.I. Al-Bassam, ”Electrodeposition of CuInSe2 thin films and their characteristics”, Physica B, Vol. 266, 1999, pp.192-197.
55.M. Nishitani, T. Negami, T. Wada, “Composition monitoring method in CuInSe2 thin film preparation”, Thin Solid Films, Vol. 258, 1995, pp. 313-316.
56.John H. Scofield, A. Duda, D. Albin, B.L. Ballardb, P.K. Predeckib, “Sputtered molybdenum bilayer back contact for copper indium diselenide-based polycrystalline thin-film solar cells”, Thin Solid Films, 260, 1995, pp. 26-31.
57.A. Ashida, Y. Hachiuma, N. Yamamoto, T. Ito, Y. Cho, “CuInSe2 thin films prepared by quasi-flash evaporation of In2Se3 and Cu2Se”, Journal of Materials Science Letters, Vol.13, 1994, pp. 1181-1184.
58.S. F. Shaukat, S. A. Khan, R. Farooq, “Opto-Electrical Properties of Copper-Indium-Selenium Thin Films”, Turkish Journal of Physics, Vol. 31, 2007, pp. 265-269.
59.S.M. Firoz Hasan, L. Quadir, Kh.S. Begum, M.A. Subhan, Kh.M. Mannan, “Dependence of the type of electrical conduction on the composition of CuInSe2-thin films”, Vacuum, Vol. 55, 1999, pp. 17-21.
60.S.M. Sze, Semiconductor Devices, Physics and Technology, Wiley, Canada, 1985.
61.Yong Shi, Zhengguo Jin, Chunyan Li, Hesong An, Jijun Qiu, “Effects of post-heat treatment on the characteristics of chalcopyrite CuInSe2 film deposited by successive ionic layer absorption and reaction method”, Thin Solid Films, Vol. 515, pp. 3339-3343.
62.C.J. Huang, T.H. Meen, M.Y. Lai, W.R., “Formation of CuInSe2 thin films on flexible substrates by electrodeposition (ED) technique“, Solar Energy Materials and Solar Cells, Vol. 82, 2004, pp. 553–565.
63.R. Caballero, C. Guillen, “CuInSe2 Formation by selenization of sequentially evaporated metallic layers”, Solar Energy Materials and Solar Cells, Vol. 86, 2005, pp. 1-10.
64.K. Bindu, C. Sudha Kartha, K.P. Vijayakumar, T. Abe, Y. Kashiwaba, “CuInSe2 thin film preparation through a new selenisation process using chemical bath deposited selenium”, Solar Energy Materials and Solar Cells, Vol. 79, 2003, pp. 67-79.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔