跳到主要內容

臺灣博碩士論文加值系統

(3.237.38.244) 您好!臺灣時間:2021/07/24 17:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪立偉
研究生(外文):Li-Wei,Hong
論文名稱:氧化鈦/氧化矽光觸媒製備及其光催化活性之研究
論文名稱(外文):Preparation and photocatalytic activity of titania/silica photocatalyst materials
指導教授:劉宗宏劉宗宏引用關係
指導教授(外文):Zong-Hong,Liou
學位類別:碩士
校院名稱:明志科技大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:96
中文關鍵詞:二氧化鈦二氧化矽
外文關鍵詞:TiO2SiO2
相關次數:
  • 被引用被引用:0
  • 點閱點閱:386
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以二氧化鈦附載於二氧化矽製備成二氧化鈦/二氧化矽光觸媒,並利用液相光催化進行甲基藍分解實驗作為光催化活性之測試。實驗以6w紫外燈為光源,甲基藍為吸附質,並改變二氧化鈦的附載量、附載於不同種類二氧化矽、不同pH值之甲基藍水溶液、不同煅燒溫度、不同光觸媒用量、不同酸解pH値之光觸媒進行光催化活性實驗,進一步了解二氧化鈦與複合二氧化鈦/二氧化矽光觸媒之差異,再利用等溫吸附模式與吸附動力學,得知二氧化矽與二氧化鈦/二氧化矽光觸媒之平衡吸附量(qe)與吸附速率(k)。
實驗結果發現二氧化鈦與二氧化鈦/二氧化矽光觸媒的光催化效果有明顯差異,二氧化鈦/二氧化矽複合光觸媒在光催化活性測試中優於二氧化鈦光觸媒,原因在於二氧化矽可分散二氧化鈦與降低二氧化鈦粒徑;又以不同二氧化鈦/二氧化矽比例可看出,當二氧化鈦/二氧化矽比例越高時光催化效果越差,因此二氧化鈦/二氧化矽在低比例下的光催化效果較好;從二氧化鈦/二氧化矽用量可知,因在液相光催化實驗中,光觸媒量過多會發生遮蔽效應,故在光觸媒使用上有最適當用量;而以不同二氧化矽可推測出二氧化矽表面積與孔體積大小會影響觸媒光催化效果;在製備二氧化鈦/二氧化矽之酸解pH值方面,因半成品二氧化鈦/二氧化矽水溶液中硝酸濃度差異不大,故在光催化效果並無太大的差異;在不同pH值之甲基藍水溶液中,因pH值高、低會影響二氧化鈦表面靜電,導致在高pH值之下光催化效果較好;不同煅燒溫度之二氧化鈦/二氧化矽光觸媒中,雖然在高溫下煅燒會造成光觸媒燒結現象,使表面積降低,但高溫煅燒光催化效果卻優於在低溫下煅燒,因此影響光催化效果不僅只有表面積,二氧化鈦結晶性也可能影響光催化效果;在等溫吸附模式下添加界面活性劑二氧化鈦/二氧化矽=3/7光觸媒吸附量最大,而添加界面活性劑二氧化矽吸附速率為最快。
This study prepared a TiO2/SiO2 photocatalyst by coating titanium dioxide onto silicon dioxide, and employed liquid phase photocatalysis to conduct a Methyl Blue decomposition experiment, in order to test the photocatalysis activity. Using a 6W UV lamp as the luminary and Methyl Blue as the adsorbent, variable amounts of titanium dioxide were coated onto various types of silicon dioxide. The photocatalysis activity test was carried out with different pH Methyl Blue solutions, calcination temperatures, photocatalyst amounts, and acid-hydrolysis pH photocatalysts, so as to determine the differences between the TiO2 photocatalyst and the TiO2/SiO2 composite photocatalyst. Furthermore, from the isothermal adsorption model and adsorption dynamics, the equilibrium adsorption capacity (qe) and adsorption rate (k) of the TiO2 and TiO2/SiO2 photocatalysts were obtained.
As found from the experiment, the TiO2 and TiO2/SiO2 photocatalysts have a significantly different photocatalysis effect. The TiO2/SiO2 composite photocatalyst is superior to the TiO2 photocatalyst in photocatalysis activity tests, as silicon dioxide can disperse titanium dioxide and reduce its particle size. In terms of the TiO2/SiO2 ratio, the higher the TiO2/SiO2 ratio, the worse the photocatalysis effect. A low TiO2/SiO2 ratio therefore has a better photocatalysis effect. In terms of the TiO2/SiO2 amount, excessive amounts of photocatalyst in the liquid phase photocatalysis experiment will lead to a masking effect, so there needs to be an appropriate amount of photocatalyst. Regarding the SiO2 type, it is inferred that the silicon dioxide surface area and pore volume will affect the photocatalysis effect. In terms of the acid-hydrolysis pH of the TiO2/SiO2 preparation, the nitric acid concentration in the semi-finished TiO2/SiO2 solution differed only slightly, thus there was no significant difference in the photocatalysis effect. In different pH Methyl Blue solutions, pH affects the static charge on titanium dioxide surfaces, resulting in a better photocatalysis effect at a higher pH. As for the TiO2/SiO2 photocatalyst with different calcination temperatures, though high temperature calcinations will sinter the photocatalyst to reduce surface area, it produces better photocatalysis effect than low temperature calcinations. Therefore, both surface area and titanium dioxide crystallinity may affect the photocatalysis effect. In the isothermal adsorption model, the addition of surfactant TiO2/SiO2 = 3/7 photocatalyst presents the maximal adsorption, and the addition of surfactant SiO2 produces the fastest rate.
中文摘要I
英文摘要II
誌謝III
目錄IV
圖目錄VI
表目錄VIII



第一章 緒論1
1.1 前言1
1.2 研究目的2
第二章 文獻回顧3
2.1 多孔材料和界面活性劑簡介3
2.1.1界面活性劑3
2.1.2界面活性劑的種類3
2.1.3微胞4
2.1.4多孔材料7
2.2 二氧化鈦光觸媒9
2.3 二氧化鈦複合材料14
2.3.1不同比例二氧化鈦/二氧化矽14
2.3.2二氧化鈦顆粒大小15
2.3.3不同煅燒溫度之影響18
2.4 吸附現象20
2.4.1等溫吸附20
2.4.2吸附動力學21
第三章 實驗部分22
3.1 實驗藥品與實驗設備22
3.2 儀器設備24
3.2.1 熱重分析儀24
3.2.2 掃描式電子顯微鏡24
3.2.3 比表面積分析儀24
3.2.4 分光光度計25
3.2.5 紫外光-可見光吸收光譜儀25
3.2.6 傅立葉紅外光光譜儀25
3.3 實驗步驟26
3.3.1 添加界面活性劑之二氧化矽的合成26
3.3.2 未加界面活性劑之二氧化矽的合成28
3.3.3 製備二氧化鈦30
3.3.4 製備二氧化鈦/二氧化矽32
3.3.5 光催化測試34
3.3.6 等溫吸附實驗36
第四章 結果與討論38
4.1 樣品性質分析38
4.1.1 掃描式電子顯微鏡38
4.1.2 比表面積分析儀42
4.1.3 熱重分析儀49
4.1.4 紫外光-可見光光譜儀53
4.1.5 傅立葉紅外線光譜儀56
4.2 光觸媒催化結果58
4.2.1 材料與觸媒鑑定58
4.2.2 甲基藍檢測58
4.2.3 檢量曲線61
4.2.4 空白實驗結果62
4.2.5 二氧化鈦、二氧化矽與二氧化鈦/二氧化矽63
4.2.6 以不同酸解pH值製備二氧化鈦/二氧化矽65
4.2.7 以不同種類二氧化矽製備不同鈦/矽比例光觸媒67
4.2.8 不同pH值之甲基藍對二氧化鈦/二氧化矽光觸媒之影響71
4.2.9二氧化鈦/二氧化矽不同煅燒溫度的影響75
4.2.10二氧化鈦/二氧化矽不同用量的影響77
4.2.11二氧化矽與二氧化鈦/二氧化矽之吸附現象79
第五章 結論87
附件一89
附件二90
參考文獻91
1.J. laine. and S. yunes, Effect of the preparation method on the pore size distribution of activated carbon from coconut shell,Carbon, 30, (1992), 601-604.
2.L. Gai, H. Jiang, D. Cui, Q. Wangb, Room temperature blue-green photoluminescence of MCM-41, MCM-48 and SBA-15mesoporous silicas in different conditions, Microporous and Mesoporous Materials, 120, (2009), 410-413.
3.C. L. Lina, Y. S. Panga, M. C. Chaob, B. C. Chenb, H. P. Lina, C. Y. Tangc, C. Y. Linc, Synthesis of SBA-16 and SBA-15 mesoporous silica crystals templated with neutral block copolymer surfactants of Physics and Chemistry of Solids, Journal of Physics and Chemistry of Solids, 69, (2008), 415-419.
4.王達興,中孔洞分子篩晶體研究,國立成功大學化學研究所碩士論文,(2004).
5.W. Guo, F. Su, X.S. Zhao, Ordered mesostructured carbon templated by SBA-16 silica, Letters to the Editor / Carbon, 43, (2005), 2397–2429.
6.K. Kaneko, Determination of pore size and pore size distribution. Adsorbents and catalysts, Journal of Membrane Science, 96, (1994), 59-89.
7.林彥伯,立方型孔道中孔洞材料MCM-48及中孔碳材之合成,國立成功大學化學系碩士論文,(2004).
8. D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky, Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores, Science, 279, (1998), 548-552.
9.D. Zhao, Q. Huo, J. Feng, B. F. Chmelka, G. D. Stucky, Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures, Journal of the American Chemical Society, 120, (1998), 6024-6036.
10.M. Chareonpanich, A. Nanta-ngern, J. Limtrakul, Short-period synthesis of ordered mesoporous silica SBA-15 using ultrasonic technique, Materials Letters, 61, (2007), 5153-5156.
11.Y. Wang, F. Zhang, Y. Wang, J. Ren, C. Li, X. Liu, Y. Guo, Y. Guo, G. Lu, Synthesis of length controllable mesoporous SBA-15 rods, Materials Chemistry and Physics, 115, (2009), 649-655.
12.Jo Il Kim, So Youn Lee, Jae Chul Pyun, Characterization of photocatalytic activity of TiO2 nanowire synthesizedfrom Ti-plate by wet corrosion process Current, Applied Physics, 9, (2009), e252-e255.
13.J. Zhang, X. Xiao, J. Nan, Hydrothermal-hydrolysis synthesis and photocatalytic properties of nano-TiO2 with an adjustable crystalline structure, Journal of Hazardous Materials, 176, (2010), 617-622.
14.S. Mahshid, M. Askari, M. Sasani Ghamsari, Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution, Journal of Materials Processing Technology, 189, (2007), 296-300.
15.H. Wang, P. Liu, X. Cheng, A. Shui, L. Zeng, Effect of surfactants on synthesis of TiO2 nano-particles by homogeneous precipitation method, Powder Technology, 188, (2008), 52-54.
16.A. Sclafani, J. M. Herrmann, Comparison of the photoelectronic and photocatalytic activities of various anatase and rutile forms of titania in pure liquid organic phases and in aqueous solutions, Journal of Physical Chemistry, 100, (1996), 13655-13661.
17.A. Sclafani, L. Palmisano, M. Schiavello, Influence of the preparation methods of TiO2, on the photocatalytic degradation of phenol in aqueous dispersion, Journal of Physical Chemistry, 94, (1990), 829-832.
18.董俊興,經摻雜之二氧化鈦觸媒膜光分解性質之研究,國立中央大學化學工程研究所碩士論文,(2001).
19.鄭智鴻,量身訂做的二氧化鈦光觸媒之合成及應用,國立成功大學化學工程學系碩士論文,(2006).
20. V. Augugliaro, L. Palmisano, M. Schiavello, A. Sclafani, L. Marchese, G. Martra., Photocatalytic degradation of nitrophenols in aqueous titanium dioxide dispersion, Applied Catalysis, 69, (1991), 323-340.
21.L. B. Reuterglrdh, M. langphasuk, Photocatalytic decolourization of reactive azo dye: a comparison between TiO2 and CdS photocatalysis chemosphere,Chemosphere, 35, (1997), 585-596.
22. F. Cot, A. Larbot, G. Nabias, L. Cot, Preparation and characterization of colloidal solution derived crystallized titania powder, Journal of the European Ceramic Society, 18, (1998), 2175-2181.
23.D. Huang, G. Luo, L. Yang, Y. Wang, Synthesis of mesoporous TiO2 materials with high specific area using inorganic acids as catalysts, China particuology, 3, (2005), 176-180.
24.R. Zukerman, L. Vradman, L. Titelman, C. Weidenthaler, M. V. Landau, M. Herskowitz, Effect of silica wall microporosity on the state and performance of TiO2nanocrystals in SBA-15 matrix, Microporous and Mesoporous Materials, 116, (2008), 237-245.
25. X. Wang, Y. Liu, Z. Hu, Y. Chen, W. Liu, G. Zhao, Degradation of methyl orange by composite photocatalysts nano-TiO2 immobilized on activated carbons of different porosities. Journal of Hazardous Materials, 169, (2009), 1061-1067.
26.S. Artkla, W. Kim, W. Choi, J. Wittayakun, Highly enhanced photocatalytic degradation of tetramethylammonium on the hybrid catalyst of titania and MCM-41 obtained from rice husk silica, Applied Catalysis B: Environmental, 91, (2009), 157-164.
27. J. Yang, J. Zhang, L. Zhua, S. Chena, Y. Zhang, Y. Tang, Y. Zhua, Y. Li, Synthesis of nano titania particles embedded in mesoporous SBA-15:Characterization and photocatalytic activity, Journal of Hazardous Materials B,137, (2006), 952-958.
28.R. van Grieken, J. Aguado, M.J. Lopez-Munoz, J. Marugan, Synthesis of size-controlled silica-supported TiO2 photocatalysts, Journal of Photochemistry and Photobiology A: Chemistry, 148, (2002), 315-322.
29.E. Beyers, E. Biermans, S. Ribbens, K. De Witte, M. Mertens, V. Meynen,S. Bals, G. Van Tendeloo, E.F. Vansant, P. Cool, Combined TiO2/SiO2 mesoporous photocatalysts with location and phase controllable TiO2 nanoparticles, Applied Catalysis B: Environmental, 88, (2009), 515-524.
30.M. Bonne, Ste phane Pronier, F. Can, X. Courtois, S. Valange, Jean-Michel Tatibouet, S. Royer, P. Marecot, D. Duprez, Synthesis and characterization of high surface area TiO2/SiO2 mesostructured nanocomposite, Solid State Sciences, 12, (2010), 1002–1012.
31.D.R Sahu, L.Y. Hong, S. C. Wang, J. L. Huang, Systhesis analysis and characterization of ordered mesoporous TiO2/SBA-15 matrix effect of calcination temperature, Microporous and Mesoporous Materials, 117, (2009), 640-649.
32.Q. Tao, Z. Xu, J. Wang, F. Liu, H. Wan, S. Zhen. Adsorption of humic acid to aminopropyl functionalized SBA-15, Microporous and Mesoporous Materials, 131, (2010), 177–185.
33.Y. Xun, S. P. Zhuo, W. Xing, H. Y. Cui, X. D. Dia, X. M. Liu, Z. F. Yan, Aqueous dye adsorption on ordered mesoporous carbons, Journal of Colloid and Interface Science, 310, (2007), 83–89.
34.林勳佑,資源再利用粉狀活性碳吸附氣相氯化汞之研究,國立中山大學環境工程研究所博士論文,(2005)
35.X. Liping, L. Jiyang , J. Hongxiao , X. Ruren , Removal of organic templates from mesoporous SBA-15 at room temperature using UV/dilute H2O2, Microporous and Mesoporous Materials, 96, (2006), 413-418.
36.S.A. Mirji, S.B. Halligudi, Dhanashri P. Sawant, K.R. Patil, A.B. Gaikwad, S.D. Pradhan, Adsorption of toluene on Si(1 0 0)/SiO2 substrate and mesoporous SBA-15, Colloids and Surfaces A: Physicochem. Eng. Aspects, 272, (2006), 220–226.
37.A. Henglein, Small-Particle Research: Physicochemical Properties of Extremely Small Colloidal Metal and Semiconductor Particles, Chemical Reviews, 89,(1989), 1861 -1873.
38.W. T. Qiao, G. W. Zhou, X. T. Zhang, T. D. Li, Preparation and photocatalytic activity of highly ordered mesoporous TiO2–SBA-15, Materials Science and Engineering C, 29, (2009), 1498-1502.
39.A.M. Busuioc-Tomoiag, M. Mertens, P. Cool, N. Bilba, E.F. Vansant, A simple way to design highly active titania /mesoporous silica photocatalysts, 2008 Elsevier B.V. All rights reserved
40.Z. Luan, E. M. Maes, Paul A. W. van der Heide, D. Zhao, Roman S. Czernuszewicz, L. Kevan, Incorporation of Titanium into Mesoporous Silica Molecular Sieve SBA-15, Chemistry of Materials, 11, (1999), 3680-3686.
41.A. Franco, M.C. Neves, M.M.L. Ribeiro Carrott, M.H. Mendonc¸, M.I. Pereira, O.C. Monteiroa, Photocatalytic decolorization of methylene blue in the presence of TiO2/ZnS nanocomposites, Journal of Hazardous Materials, 161, (2009), 545–550.
42. C. Guillard, H. Lachheb, A. Houas, M. Ksibi, E. Elaloui, H. Jean Marie, Influence of chemical structure of dyes, of pH and of inorganicsalts on their photocatalytic degradation by TiO2 comparisonof the efficiency of powder and supported TiO2, Joumal of Photochemistry and Photobiology A:Chemistry, 158, (2003), 27-36
43.M.R. Dhananjeyan, R. Annapoorani, R. Renganathan, A comparative study on the TiO2 mediated photo-oxidation of uracil, thymine and 6-methyluracil, Journal of Photochemistry and Photobiology A: Chemistry, 109, (1997), 147-153.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊