(18.232.50.137) 您好!臺灣時間:2021/05/06 17:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:廖英傑
研究生(外文):Ying-Chieh Liao
論文名稱:以溶膠-凝膠法製備磷酸鋰鐵/碳陰極複合材料及其 應用
論文名稱(外文):The preparation of LiFePO4/C cathode composite materials by a sol-gel method and its application
指導教授:楊純誠楊純誠引用關係
指導教授(外文):Chun-Chen Yang
口試委員:陳振興簡文鎮
口試委員(外文):Chen-Hsing ChenJian Wen-Chen
口試日期:2011-07-14
學位類別:碩士
校院名稱:明志科技大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:149
中文關鍵詞:磷酸鋰鐵溶膠-凝膠法檸檬酸陰極材料複合材料鋰離子電池
外文關鍵詞:LiFePO4/CCitric acidSol-gel processCathod materialComposite materialLi-ion battery
相關次數:
  • 被引用被引用:1
  • 點閱點閱:199
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要是以溶膠-凝膠法(sol-gel)製備及不同鍛燒溫度(650℃、750℃、850℃)與不同碳含量(莫耳比為檸檬酸(CA):Fe = 0.5~1:1、聚乙二醇(PEG):Fe = 0.25~1:1)製備磷酸鋰鐵/碳複合陰極材料,製備合成的陰極材料加入super-p及PVDF黏著劑混漿塗佈於鋁箔上作為鋰離子二次電池陰極片,組裝成鈕扣型鋰離子電池(CR 2032)後,進行充放電測試。所製備的LiFePO4/C材料物/化性質分析部分以熱種分析儀(TGA)、元素分析儀(EA)、掃描式電子顯微鏡/能量分散光譜儀(SEM/EDX)、穿透式電子顯微鏡(HR-TEM)、顯微拉曼光譜儀(micro-Raman)、X-ray繞射分析(XRD)、雷射粒徑分析(DLS)及AC阻抗分析(AC impedance)等各種方法進行其材料特性及電性分析。
由實驗分析結果發現在750℃下鍛燒12小時合成的LiFePO4/C陰極材料,經DLS分析後其平均粒徑大小,約為635 nm;PEG(莫耳比為1)改質後的LiFePO4/C陰極材料平均粒徑為531.2 nm。由AC阻抗法量測750℃下鍛燒12小時合成LiFePO4/C陰極材料電子導電度最佳,為1.50510-3 S cm-1;PEG(莫耳比為1)改質後的LiFePO4/C陰極材料導電度有提升,為2.98×10-2 S cm-1。在組裝電池經充/放電測試後,750℃下鍛燒12小時合成的LiFePO4/C陰極材料,於0.1C充/放電速率下,有130.35 mAh g-1放電克電容量,庫侖效率約95%,但是在3C充/放電速率下,則放電克電容量可達近80 mAh g-1,庫侖效率約95%。

The study reports the preparation of LiFePO4/C cathode materials by a sol-gel and post-sintering process. The citric acid (CA) and the PEG were used as carbon source(molar ratio of CA:Fe is 0.5~1:1、PEG:Fe is 0.25~1:1). The temperature of post-sintering process was kept at a range of 650~850oC. The characteristic properties of LiFePO4/C materials were examined by thermal gravimetric analysis (TGA), X-ray diffraction (XRD), micro-Raman spectroscopy, scanning electron microscopy (SEM/EDX), Transmission electron microscope(HR-TEM), elemental analysis (EA), and AC impedance method.
It was found that the optimum post-thermal temperature was at 750oC for 12 h. The particle size was approximately 635 nm. The electronic conductivity was around 1.50×10-3 S cm-1. It was found that the highest specific discharge capacity of LiFePO4/C materials at C/10 was around 130 mAh g-1 and a coulomb efficiency was 95%. However, the specific discharge capacity and the coulomb efficiency at a high rate of 3C were achieved about 80 mAh g-1 and 95%. It was found the LiFePO4/C with PEG(molar ratio is 1), the particle size was 531.2 nm. The electronic conductivity was around 2.98×10-2 S cm-1. The above result indicated that the as-prepared LiFePO4/C materials by a sol-gel process show good electrochemical performance.

明志科技大學碩士學位論文指導教授推薦書 i
明志科技大學碩士學位論文口試委員會審定書 ii
明志科技大學學位論文授權書 iii
誌 謝. iv
摘 要. v
Abstract… vi
圖目錄…. x
表目錄…. xiv
一、緒論. 1
1.1、前言 1
1.2、研究動機 2
二、文獻回顧 3
2.1、電池簡介 3
2.2、鋰離子二次電池工作原理 5
2.3、陽極材料 8
2.3.1、碳材陽極材料 8
2.3.2、鋰合金 10
2.3.3、金屬氧化物 10
2.3.4、矽合金與矽化合物 11
2.4、電解質 12
2.4.1、液態電解質 12
2.4.2、固態高分子電解質 12
2.4.3、膠態高分子電解質 13
2.5、隔離膜 13
2.6、陰極材料 14
2.6.1、層狀結構之陰極材料 14
2.6.1.1、LiCoO2 14
2.6.1.2、LiNiO2 17
2.6.1.3、LixNi1-yCoyO2 18
2.6.1.4、LixNi1-y-zCoyMnzO2 19
2.6.1.5、LiNi1-x-yCoxMnyO2 20
2.6.1.6、Li[Li1/3-2/3NixMn2/3-x/3]O2 20
2.6.2、尖晶石結構LiMn2O4 23
2.6.3、橄欖石結構LiFePO4 25
2.7、LiFePO4陰極材料合成方法 32
2.7.1、固態燒結法 32
2.7.2、溶膠凝膠法 32
2.7.3、共沉澱法 33
2.7.4、微乳化法 33
三、實驗方法 34
3.1、化學藥品及實驗儀器 34
3.1.1、化學藥品及材料 34
3.1.2、實驗儀器 36
3.2、LiFePO4陰極材料製備 38
3.2.1、以不同溫度探討LiFePO4/C陰極材料 38
3.2.2、探討不同檸檬酸(CA) 添加量及聚乙二醇(PEG)改質LiFePO4/C陰極材料 40
3.3、鈕扣型電池組裝 42
3.3.1、陰極漿料及電極製備 42
3.3.2、鈕扣型(CR 2032)電池組裝 44
3.3.3、充/放電測試步驟 46
3.4、LiFePO4陰極材料分析 48
3.4.1、材料特性分析-熱性及碳含量分析 48
3.4.1.1、熱重/熱穩定性分析-TGA 48
3.4.1.2、碳元素分析儀-EA 48
3.4.2、材料特性分析-物性分析 49
3.4.2.1、掃瞄式電子顯微鏡/能量分散光譜分析-SEM/EDX 49
3.4.2.2、LiFePO4/C碳包覆分析-高解析度穿透式電子顯微鏡HR-TEM 50
3.4.2.3、顯微拉曼光譜分析(Micro-Raman) 50
3.4.2.4、X-ray繞射分析 51
3.4.2.5、雷射粒徑分析 52
3.4.3、材料特性分析-電性分析 53
3.4.3.1、電化學阻抗分析及測試 53
3.4.3.2、LiFePO4/C陰極材料電子導電率量測 53
四、結果與討論 54
4.1、LiFePO4/C陰極材料之TGA分析 54
4.2、LiFePO4/C陰極材料之XRD分析 55
4.3、LiFePO4/C陰極材料之SEM/EDX分析 59
4.4、LiFePO4/C材料碳包覆顯微分析(TEM) 72
4.5、LiFePO4/C陰極材料之顯微拉曼分析 74
4.6、LiFePO4/C陰極材料之雷射粒徑分析 85
4.7、LiFePO4/C陰極材料之碳含量分析(EA) 90
4.8、LiFePO4/C陰極材料之電子導電率分析(AC法) 92
4.9、LiFePO4/C陰極材料之充/放電性能分析 95
4.9.1、測試不同溫度鍛燒製備LiFePO4/C陰極材料在不同充/放電速率(0.1C~1C)充/放電分析 95
4.9.2、LiFePO4/C(750℃鍛燒)在高速率充/放電下的電性分析 102
4.9.3、不同碳源添加量之LiFePO4/C高速率充/放電電性分析 104
4.9.4、循環壽命電性分析 112
4.10、AC界面阻抗分析 116
4.10.1、測試不同溫度鍛燒製備的LiFePO4/C 陰極材料AC介面阻抗分析 116
五、結論. 121
六、參考文獻 123
[1]林振華、林振富翻譯,“充電式鋰離子電池材料與應用”, 全華科技圖書股份有限公司發行 (2001).
[2]M. Wakihara, “Recent developments in lithium ion batteries”, Mater. SCI. Engineering. R33 (2001) 109-134.
[3]K. Ozawa, “Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system”, Solid State Ionics. 69 (1994) 212-221.
[4]S. Megahed, W. Ebner, “Lithium-ion battery for electronic applications”, J. Power Sources. 54 (1995) 155-162.
[5]吳弘俊, “低成本錳系鋰電池正極材料介紹”, 工業材料, 178期 (2001) 134.
[6]王富田, “鋰離子二次電池負極材料之應用分析”, 工業材料, 180期 (2001) 100.
[7]王婉純, “鋰離子二次電池負極碳材之應用介紹”, 工業材料, 178期 (2001) 139.
[8]G. Ting-Kuo Fey, W. Li, J. R. Dahn, “LiNiVO4: A 4.8 Volt Electrode Material for Lithium Cells”, J. Electrochem. Soc. 141 (1994) 2279-2282.
[9]M. S. Whittingham, R. Chen, T. Chirayil, P. Zavalij, “The intercalation and hydrothermal chemistry of solid electrodes”, Solid State Ionics. 94 (1997) 227-238.
[10]D. Rahner, S. Machill, H. Schlörb, K. Siury, M. Kloβ, W. Plieth, “Intercalation materials for lithium rechargeable batteries”, Solid State Ionics. 86 (1996) 891-896.
[11]Y. E. Eli, W. F. Howard, Jr, “LiCu Cu Mn O4: 5 V Cathode Materials”, J. Electrochem. Soc. 144 (1997) L205-L207.
[12]G. Maurin, Ch. Bousquet, F. Henn, P. Bernier, R. Almairac, B. Simon, “Electrochemical lithium intercalation into multiwall carbon nanotubes: a micro-Raman study”, Solid State Ionics. 136 (2000) 1295-1299.
[13]Z. h. Yang, H. Q. Wu, “Electrochemical intercalation of lithium into carbon nanotubes”, Solid State Ionics. 143 (2001) 173-180.
[14]M. Winter, J.O. Besenhard, “Electrochemical lithiation of tin and tin-based intermetallics and composites”, Electrochim. Acta. 45 (1999) 31-50.
[15]J. Yin, M. Wada, S. Tanase, T. Sakai, “Nanocrystalline Ag-Fe-Sn Anode Materials for Li-Ion Batteries”, J. Electrochem. Soc. 151 (2004) A583- A589.
[16]B. Veeraraghavan, A. Durairajan, B. Haran, B. Popov, R. Guidotti, “Study of Sn-Coated Graphite as Anode Material for Secondary Lithium-Ion Batteries”, J. Electrochem. Soc. 149 (2002) A675-A681.
[17]G. X. Wang, L. Sun, D. H. Bradhurst, S. Zhong, S. X. Dou, H. K. Liu, “Nanocrystalline NiSi alloy as an anode material for lithium-ion batteries”, J. Alloys and Compounds, 306 (2000) 249-252.
[18]X. Wu, Z. Wang, L. Chen, X. Huang, “Ag-enhanced SEI formation on Si particles for lithium batteries”, Electrochem. Comm. 5 (2003) 935-939.
[19]W. R. Liu, Z. Z. Guo, W. S. Young, D. T. Shieh, H. C. Wu, M. H. Yang, N. L. Wu, “Effect of electrode structure on performance of Si anode in Li-ion batteries: Si particle size and conductive additive”, J. Power Sources. 140 (2005) 139-144.
[20]J. Xie, G. S. Cao, X. B. Zhao, “Electrochemical performances of Si-coated MCMB as anode material in lithium-ion cells”, Mater. Chem. Phys. 88 (2004) 295-299.
[21]N. Dimov, S. Kugino, M. Yoshio, “Mixed silicon–graphite composites as anode material for lithium ion batteries: Influence of preparation conditions on the properties of the material”, J. Power Sources. 136 (2004) 108-144.
[22]D. E. Fenton, J. M. Parker, P. V. Wright, “Complexes of alkali metal ions with poly(ethylene oxide)”, Polymer. 14 (1973) 589.
[23]W. Wieczorek, J. R. Stevens, Z. Florja czyk, “Composite polyether based solid electrolytes. The Lewis acid-base approach”, Solid State Ionics. 85 (1996) 67-72.
[24]D. Ostrovskii, L. M. Torell, G. B. Appetecchi, B. Scrosati, “An electrochemical and Raman spectroscopical study of gel polymer electrolytes for lithium batteries”, Solid State Ionics. 106 (1998) 19-24.
[25]H. Y. Sung, Y. Y. Wang, C. C. Wan, “Preparation and Characterization of Poly(vinyl chloride-co-vinyl acetate)-Based Gel Electrolytes for Li-Ion Batteries”, J. Electrochem. Soc. 145 (1998) 127-1211.
[26]G. B. Appetecchi, F. Croce, B. Scrosati, “High-performance electrolyte membranes for plastic lithium batteries”, J. Power Sources. 66 (1997) 77-82.
[27]F. Croce, G. B. Appetecchi, S. Slane, M. Salomon, M. Tavarez, S. Arumugam, Y. Wang, S. G. Greenbaum, “Impedance and lithium-7 NMR studies of polymer electrolytes based on poly(vinylidene fluoride)”, Solid State Ionics. 86 (1996) 307-312.
[28]T. A. Hewston, B. L. Chamberland, “A Survey of first-row ternary oxides LiMO2 (M = Sc-Cu)”, J. Phys. Chem. Solids. 48 (1987) 97-108.
[29]K. Mizushima, P. C. Jones, P. J. Wiseman, J. B. Goodenough, “LixCoO2 (0[30]M.G.S.R. Thomas, P. G Bruce, J. B. Goodenough, “Lithium mobility in the layered oxide Li1−xCoO2”, Solid State Ionics. 17 (1985) 13-19.
[31]R. J. Gummow, M. M. Thackeray, W. David, S. Hull, “Structure and electrochemistry of lithium cobalt oxide synthesised at 400°C ”, Mat. Res. Bull. 27 (1992) 327-337.
[32]B. Garcia, J. Farcy, J. P. Pereira-Ramos, “Electrochemical Properties of Low Temperature Crystallized LiCoO2”, J. Electrochem. Soc. 114 (2001) 1179-1184.
[33]R. Koksbang, J. Barker, H. Shi, M.Y Saidi, “Cathode materials for lithium rocking chair batteries”, Solid State Ionics. 84 (1996) 1-21.
[34]M. M. Thackeray, M. H. Rossouw, R. J. Gummow, D. C. Liles, K.Pearce, A. De Kock, W.I.F. David, S. Hull, “Ramsdellite-MnO2 for lithium batteries: the ramsdellite to spinel transformation”, Electrochim. Act. 38 (1993) 1259-1267.
[35]R.V Chebiam, A.M. Kannan, F. Prado, “Comparison of the chemical stability of the high energy density cathodes of lithium-ion batteries ”, Electrochem. Commun. 3 (2001) 624-627.
[36]M. Broussely, F. Perton, P. Biensan, J.M. Bodet, J. Labat, A. Lecerf,
C.Delmas, A. Rougier, J.P. Peres, “LixNiO2, a promising cathode for rechargeable lithium batteries”, J. Power Sources. 54 (1995) 109-114.
[37]T. Ohzuku, A. Ueda, M. Nagayama, “Electrochemistry and Structural Chemistry of LiNiO2 (R m) for 4 Volt Secondary Lithium Cells”, J. Electrochem., Soc. 140 (1993) 1682-1870.
[38]A. Rougier, P. Gravereau, C. Delmas, “Optimization of the Composition of the Li1–zNi1+zO2 Electrode Materials: Structural, Magnetic, and Electrochemical Studies”, J. Electrochem., Soc. 143 (1996) 1168-1175.
[39]H. Arai, S. Okada, Y Sakurai, J. Yamaki, “Reversibility of LiNiO2 cathode”, Solid State Ionics. 95 (1997) 275-282.
[40]C. Delmas, I. Saadoune, “Electrochemical and physical properties of the LixNi1−yCoyO2 phases”, Solid State Ionics. 53 (1992) 370-375.
[41]C. Delmas, I. Saadoune, A. Rougier, “The cycling properties of the LixNi1−yCoyO2 electrode”, J. Power Sources. 44 (1993) 595-602.
[42]E. Zhecheva, R. Stoyanova, “Stabilization of the layered crystal structure of LiNiO2 by Co-substitution”, Solid State Ionics. 66 (1993) 143-149.
[43]J. Cho, G. Kim, H. S. Lim, “Effect of Preparation Methods of LiNi1–xCoxO2 Cathode Materials on Their Chemical Structure and Electrode Performance”, J. Electrochem., Soc.146 (1999) 3571-3576.
[44]D. Caurant, N. Baffier, B. Garcia, J. P. Pereira-Ramos, “Synthesis by a soft chemistry route and characterization of LiNixCo1−xO2 (0 ≤ x ≤ 1) cathode materials”, Solid State Ionics. 91 (1996) 45-54.
[45]R. J. Gummow, M. M. Thackeray, “Lithium-cobalt-nickel-oxide cathode materials prepared at 400°C for rechargeable lithium batteries”, Solid State Ionics. 53 (1992) 681-687.
[46]B. Banov, J. Bourilkov, M. Mladenov, “Cobalt stabilized layered lithium-nickel oxides, cathodes in lithium rechargeable cells”, J. Power Sources. 54 (1995) 268-270.
[47]Z. Liu, A. Yu, J. Y. Lee, “Synthesis and characterization of LiNi1−x−yCoxMnyO2 as the cathode materials of secondary lithium batteries”, J. Power Sources. 81 (1999) 416-419.
[48]S. Jouanneau, D. D. MacNeil, Z. Lu, S. D. Beattie, G Murphy, J. R. Dahn, “Morphology and Safety of Li[NixCo1–2xMnx]O2 (0 x 1/2)”, J. Electrochem. Soc. 150 (2003) A1299-A1304.
[49]Y. Chen, G.X. Wang, K. Konstantinov, H.K. Liu, S.X. Dou, “Synthesis and characterization of LiCoxMnyNi1−x−yO2 as a cathode material for secondary lithium batteries”, J. Power Sources. 119 (2003) 184-188.
[50]N. Yabuuchi, T. Ohzuku, “Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries”, J. Power Sources. 119 (2003) 171-174.
[51]Y. Shao-Horn, S. A. Hackney, A. R. Armstrong, P. G. Bruce, R. Gitzendanner, C. S. Johnson, M. M. Thackeray, “Structural Characterization of Layered LiMnO2 Electrodes by Electron Diffraction and Lattice Imaging”, J. Electrochem. Soc. 146 (1999) 2404-2412.
[52]Koichi Numata, Chie Sakaki, Shoji Yamanaka, “Synthesis and characterization of layer structured solid solutions in the system of LiCoO2–Li2MnO3”, Solid State Ionics. 117 (1999) 257-263.
[53]Z. Lu, J. R. Dahn, “Understanding the Anomalous Capacity of Li/Li[NixLi(1/3–2x/3)Mn(2/3–x/3)]O2 Cells Using In Situ X-Ray Diffraction and Electrochemical Studies”, J. Electrochem. Soc. 149 (2002) A815-822.
[54]Z. Lu, L. Y. Beaulieu, R. A. Donaberger, C. L. Thomas, and J. R. Dahn, “Synthesis, Structure, and Electrochemical Behavior of Li[NixLi1/3–2x/3Mn2/3–x/3]O2”, J. Electrochem. Soc. 149 (2002) A778-A791.
[55]Y. Gao, J. R. Dahn, “The High Temperature Phase Diagram of Li1+xMn2–xO4 and Its Implications”, J. Electrochem. Soc. 143 (1996) 1783-1788.
[56]M.M. Thackeray, W.I.F. David, P.G. Bruce, J.B. Goodenough, “Lithium insertion into manganese spinels”, Mat. Res. Bull. 18 (1983) 461-472.
[57]R.J. Gummow, A. D. Kock, M.M. Thackeray, “Improved capacity retention in rechargeable 4 V lithium/lithium-manganese oxide (spinel) cells”, Solid State Ionics. 69 (1994) 59-67.
[58]G. G. Amatucci, C. N. Schmutz, A. Blyr, C. Sigala, A. S. Gozdz, D. Larcher, J. M. Tarascon, “Materials' effects on the elevated and room temperature performance of C/LiMn2O4 Li-ion batteries”, J. Power Sources. 69 (1997) 11-25.
[59]P. Arora, B. N. Popov, R. E. White, “Electrochemical Investigations of Cobalt-Doped LiMn2O4 as Cathode Material for Lithium-Ion Batteries”, J. Electrochem. Soc. 145 (1998) 807-815.
[60]J. R. Dahn, T. Zheng, C. L. Thomas , “Structure and Electrochemistry of Li2CrxMn2–xO4 for 1.0 x 1.5”, J. Electrochem. Soc. 145 (1998) 851-859.
[61]A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough, “Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries”, J. Electrochem. Soc. 144 (1997) A1188-A1194.
[62]A. Yamada, Y. Kudo, K. Y. Liu, “Phase Diagram of Lix(MnyFe1–y)PO4 (0 x, y 1)”, J. Electrochem. Soc. 148 (2001) A1153-A1158.
[63]A. S. Andersson, B. Kalska, P. Eyob, D. Aernout, L. Häggström, J. O. Thomas, “Lithium insertion into rhombohedral Li3Fe2(PO4)3”, Solid State Ionics. 140 (2001) 63-70.
[64]B. L. Cushing, J. B. Goodenough, “Influence of carbon coating on the performance of a LiMn0.5Ni0.5O2 cathode”, Solid State Sci. 4 (2002) 1487-1493.
[65]N. Ravet, J. B. Goodenough, S. Besner, M. Silmoneau, P. Hovington, M. Armand, Proceedings of the 196th ECS Meeting, Honolulu, October (1999) 17-22.
[66]Z. H. Chen, J. R. Dahn, “Reducing Carbon in LiFePO4/C Composite Electrodes to Maximize Specific Energy, Volumetric Energy, and Tap Density”, J. Electrochem. Soc. 149 (2002) A1184 -A1189.
[67]F. Croce, A. D' Epifanio, J. Hassoun, A. Deptula, T. Olczac, B. Scrosati, “A Novel Concept for the Synthesis of an Improved LiFePO4 Lithium Battery Cathode”, Electrochem. Solid-State Lett. 5 (2002) A47-A50.
[68]A. S. Andersson, J. O. Thomas, “The source of first-cycle capacity loss in LiFePO4”, J. Power Sources. 97 (2001) 498-502.
[69]M. Takahashi, S. Tobishima, K. Taker, Y Sakurai, “Reaction behavior of LiFePO4 as a cathode material for rechargeable lithium batteries”, State Solid Ionics. 148 (2002) 283-289.
[70]A.Yamada, S.C. Chung, K. Hinokuma, “Optimized LiFePO4 for Lithium Battery Cathodes”, J. Electrochem. Soc., 148 (2001) A224-A229.
[71]J. Yang,J. J. Xu, “Nonaqueous Sol-Gel Synthesis of High-Performance LiFePO4 ”, Electrochem. Solid-State Lett. 7 (2004) A515-A518.
[72]C. R. Sides, F. Croce, V. Y. Young, C. R. Martin, B. Scrosatic, “A High-Rate, Nanocomposite LiFePO4/Carbon Cathode” Electrochem. Solid-State Lett. 8 (2005) A484-A487.
[73]G. Arnold, J. Garche, R. Hemmer, S. Ströbele, C. Vogler, M. Wohlfahrt-Mehrens, “Fine-particle lithium iron phosphate LiFePO4 synthesized by a new low-cost aqueous precipitation technique”, J. Power Sources. 119 (2003) 247-251.
[74]K. S. Park, J. T. Son, H. T. Chung, S. J. Kim, C. H. Lee, H. G. Kim, “Synthesis of LiFePO4 by co-precipitation and microwave heating”, Electrochem. Comm. 5 (2003) 839-850.
[75]T. H. Cho, H. T. Chung, “Synthesis of olivine-type LiFePO4 by emulsion-drying method”, J. Power Sources. 133 (2004) 272-276.
[76]葉昱均, “以調制光譜及拉曼光譜研究低溫成長砷化鎵之光電特性”, 國立成功大學光電科學與工程研究所 (2004) 碩士論文.
[77]Y. H. Rho, L. F. Nazar, L. Perry , D. Ryan, “Surface Chemistry of LiFePO4 Studied by Mössbauer and X-Ray Photoelectron Spectroscopy and Its Effect on Electrochemical Properties ”, J. Electrochem. Soc. 154 (2007) A283-A289.
[78]T. Nakamura, Y. Miwa, M. Tabuchi, Y. Yamada, “Structural and surface modifications of LiFePO4 olivine particles and their electrochemical properties”, J. Electrochem. Soc. 153 (2006) A1108-A1114.
[79]A. Fedorkovaa, A. Nacher-Alejos, P. Gomez-Romero, R. Orinakova, D. Kaniansky,“Structural and electrochemical studies of PPy/PEG-LiFePO4 cathode material for Li-ion batteries”, Electrochim. Acta. 55 (2010) 943-947.
[80]K. Zaghib, A. Mauger, F. Gendron, C.M. Julien, “Magnetic studies of phospho-olivine electrodes in relation with their electrochemical performance in Li-ion batteries”, Solid State Ionics. 179 (2008) 16–23.
[81]S.L. Bewlay, K. Konstantinov, G.X. Wang, S.X. Dou, H.K. Liu, “Conductivity improvements to spray-produced LiFePO4 by addition of a carbon source”, Mater. Lett. 58 (2004) 1788- 1791.
[82]J. K. Kim, J. W. Choi, G. S. Chauhan, J. H. Ahn, G. C. Hwang, J. B. Choi, H. J. Ahn, “Enhancement of electrochemical performance of lithium iron phosphate by controlled sol–gel synthesis”, Electrochim. Acta. 53 (2008) 8258-8264.
[83]Youyong Liu, Chuanbao Cao, Jing Li, “Enhanced electrochemical performance of carbon nanospheres–LiFePO4 composite by PEG based sol–gel synthesis”, Electrochim. Acta. 55 (2010) 3921-3926

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔