跳到主要內容

臺灣博碩士論文加值系統

(44.222.134.250) 您好!臺灣時間:2024/10/07 03:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊梃榮
論文名稱:基於延展式區域三元化圖型之特徵描述子
論文名稱(外文):Feature descriptor based on extended local ternary pattern
指導教授:廖文宏廖文宏引用關係
學位類別:碩士
校院名稱:國立政治大學
系所名稱:資訊科學學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:98
語文別:中文
論文頁數:86
中文關鍵詞:區域二元化圖型延展式區域三元化圖型材質辨識
外文關鍵詞:uniform pattern
相關次數:
  • 被引用被引用:1
  • 點閱點閱:285
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
特徵描述子為電腦視覺中相當重要的一部分,本論文基於知名的特徵描述子:區域二元化圖型的架構上,提出了新的特徵描述子,並將其命名為延展式區域三元化圖型。我們所提出的特徵描述子與區域二元化圖型相比,有著較強的抗噪能力而且保留了區域二元化圖型簡單的計算複雜度。本論文也探討了區域三元化圖型中是否存在著uniform pattern,基於區域二元化圖型中uniform pattern的定義,我們提出了屬於區域三元化圖型的uniform pattern,並在圖像實驗中驗證了其大量存在性。我們將區域三元化圖型應用於材質分析與人臉辨識中,實驗結果驗證了本論文所提出的特徵描述法在這些應用的優越性。
Robust feature descriptor is essential in developing effective computer vision applications. In this thesis, we present an extension to the well-known local binary pattern (LBP) feature descriptor. The newly defined descriptor known as extended local ternary pattern (ELTP) exhibits better noise resistivity than the original LBP, while maintaining computational simplicity. We further investigate the presence of uniform patterns in ELTP. With a slight modification of the definition of uniformity, it is found experimentally that uniform ELTPs account for 80% of all patterns in texture images. The proposed ELTP and uniform ELTP are applied to object classification tasks, including texture analysis and face recognition. Experimental results validate the superiority of ELTP over conventional LBP approaches.
第一章 研究背景與目的 1
第二章 相關研究 4
2.1 區域二元化圖型 4
2.2 區域三元化圖型 7
第三章 延展式區域三元化圖型 10
3.1 三元化的範圍設定 10
3.2 樣式編碼與轉換方式 12
3.3 Spectral Clustering 19
3.3.1 分群簡介 19
3.3.2 Spectral Clustering的概念 20
3.3.3 Graph Laplacian Matrix 22
3.3.4 Spectral Clustering 演算法 23
3.4 分群結果 25
第四章 ELTP 中的Uniform Patterns 29
4.1 LBP中的Uniform Pattern 29
4.2 ELTP中的Uniform Pattern 30
4.3 Uniform Pattern的降維 33
第五章 抗噪實驗 36
5.1 抗噪力實驗(一):加入高斯雜訊 36
5.2 抗噪力實驗(二):光影變化 40
5.3 抗噪力實驗(三):加入不同強度雜訊 43
第六章 延展式區域三元化圖型之應用 49
6.1 材質分類 49
6.1.1 材質分類實驗結果 50
6.1.2 材質分類實驗結果(二) 56
6.2 人臉辨識 59
6.2.1 實驗結果 60
第七章 結論與後續研究改進方向 63
參考文獻 64
附錄A材質分類實驗結果(二)數據 67

[1] P. Viola and M. Jones, “Robust Real-Time Object Detection”. Proc. ICCV Second Int'l Workshop Statistical and Computational Theories of Vision Modelling, Learning, Computing, and Sampling, July 2001.
[2] N. Dalal and B. Triggs, “Histograms of Oriented Gradients for Human Detection”, Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR '05), vol. 1, pp. 886-893, 2005.
[3] R.Plamondon and S.N. Srihari, “On-Line and Off-Line Handwriting Recognition: A Comprehensive Survey”. IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 22, no. 1, pp. 63-84, Jan. 2000
[4] Google goggles
www.google.com/mobile/goggles
[5] VOC 2009 Challenge Results:
http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2009/results/index.html
[6] D. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,” Int'l J. Computer Vision, vol. 2, no. 60, pp. 91-110, 2004.
[7] B. S. Manjunath, J.-R. Ohm, V. V. Vasudevan, and A. Yamada ,“Color and texture descriptors,” IEEE Trans. Circuit Syst. Video Technol., vol. 11, pp. 703–715, June 2001
[8] T. Ojala, M. Pietikainen, and T. Maenpaa, “Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 24, no. 7, pp. 971-987, July 2002.
[9] Pontil and A. Verri, “Support Vector Machines for 3D Object Recognition”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 20(6), pp. 637-646, 1998.
[10] A. Gionis, P. Indyk, and R. Motwani, “Similarity Search in High Dimensions via Hashing,” Proc. Very Large Data Base Conf. (VLDB '99), pp. 518–529, Sept. 1999.
[11] T. Maenpaa, and M. Pictikainen, “Multi-scale binary patterns for texture analysis,” Springer Berlin / Heidelberg, 2003.
[12] C. He, T. Ahonen and M. Pietikäinen, “A Bayesian Local Binary Pattern
texture descriptor”,Proc. Int’l Conf. on Pattern Recognition, 2008.
[13] X. Tan and B. Triggs. “Enhanced local texture feature sets for face recognition under difficult lighting conditions”. In Analysis and Modeling of Faces and Gestures, volume 4778 of LNCS, pages 168–182. Springer, 2007
[14] Matthias Hein and Ulrike von Luxburg ,“Short Introduction to Spectral Clustering”, MLSS 2007
[15] Ng, A., Jordan, M., and Weiss, Y. (2002). On spectral clustering: analysis and an algorithm. In T. Dietterich,S. Becker, and Z. Ghahramani (Eds.), Advances in Neural Information Processing Systems 14 (pp. 849 –856). MIT Press.
[16] Brodatz database
http://www.ux.uis.no/~tranden/

[17] T. Ahonen, A. Hadid, and M. Pietikainen, “Face Description with Local Binary Patterns: Application to Face Recognition,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 28, no. 12, pp.2037-2041, Dec. 2006.
[18] The Yale Face Database B
http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html
[19] G. Zhao and M. Pietik¨ainen. Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Trans. PAMI, 29(6):915–928, 2007.
[20] G.Zhao and M. Pietikäinen, “Dynamic Texture Recognition Using Volume Local Binary Patterns”, Proc. ECCV 2006 Workshop on Dynamical Vision, Graz, Austria, 2006, accepted.
[21] M. Heikkil¨a, M. Pietik¨ainen, and C. Schmid, “Description of interest regions with center-symmetric local binary patterns”,In Computer Vision, Graphics and Image Processing, 5th Indian Conference, pages 58–69, 2006.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top