# 臺灣博碩士論文加值系統

(44.222.64.76) 您好！臺灣時間：2024/06/15 06:18

:::

### 詳目顯示

:

• 被引用:1
• 點閱:184
• 評分:
• 下載:0
• 書目收藏:0
 現今，許多工程師使用LRFD (強度設計法設計) 取代ASD（容許應力法設計），設計不同的土木工程結構。在美國LRFD已經成為鋼結構的設計標準，新版的AISC (2005) 將ASD和LRFD整合在一本設計手冊，讓工程師探究兩種設計方法。這項研究整合介紹ASD（1989），LRFD（1999）與AISC（2005）三個版本之鋼樑構件撓曲設計之方程式和基本背景。本研究比較了幾個撓曲設計參數（Lp、Lr、λp 、λr）在每一本版本的差異，我們證明他們幾乎是相同的。最後，我們提供與比較不同規範之W16x67樑的側向扭矩挫屈圖，觀察不同的規範之間的基本差異。
 Nowadays, many practical engineers use LRFD (Load and Resistance Factor Design) instead of ASD (Allowable Stress Design) to design different civil structures. Actually, LRFD design has gradually become the major design criteria for steel structures in the United States. AISC (2005) has published both ASD and LRFD in one design manual, which allows practical engineers to explore both design methods. This research has investigated major equations and fundamentals regarding to the flexural design of a steel beam with the ASD (1989), LRFD (1999) and AISC (2005). This research also compared several parameters (Lp , Lr, λp and λr) for each code, then we proved that they are almost the same. Finally, we draw the lateral-torsional buckling diagram for the beam section W16x67 with each code, it is easier to observe the differences among the different specifications.
 Abstract / Chinese iAbstract iiTable of Contents iiiFigures List vSymbols viiChapter 1 Introduction 1 1.1 Background 1 1.2 Previous studies 1 1.3 Objectives 2Chapter 2 AISC Provisions for Flexural Members 3 2.1 ASD 1989 (9th edition) 3 2.1.1 Compactness of sections 3 2.1.2 Flexural buckling bending about major axis (x-axis) 8 2.1.3 Flexural buckling bending about minor axis (y-axis) 10 2.1.4 Summary for LTB / x-axis 11 2.1.5 Summary for FLB / with compact web/x-axis 12 2.1.6 Summary for WLB / Flange is compact or noncompact 13 2.1.7 Summary for LTB / y-axis 14 2.1.8 Summary for FLB / Web is compact 15 2.1.9 Summary for WLB / y-axis 15 2.2 LRFD 1999 (3rd edition) 162.2.1 Compactness of sections 16 2.2.2 Lateral-Torsional Buckling using Lb 21 2.2.3 Lateral-Torsional Bucklng using λ 24 2.2.4 Flexural Buckling Modes: FLB 26 2.2.5 Flexural Buckling Modes: WLB 28 2.3 AISC 2005 (13th edition) 30 2.3.1 Compactness of sections 30 2.3.2 Doubly symmetric compact I-shaped members and channels bent about their major axis 36 2.3.3 Doubly symmetric I-shaped members with compact webs and noncompact or slender flanges bent about their major axis 40 2.3.4 Other I-shaped members with compact or noncompact webs bent about their major axis 45 2.3.5 Doubly symmetric and singly symmetric I-shaped members with slender webs bent about their major axis 54 2.3.6 I-shaped members and channels bent about their minor axis 602.4 Derivation of various moment parameters 63 2.4.1 The term of Lp 63 2.4.2 The term of Lr 64 2.4.3 The terms of 672.5 Comparison of Various Moment Design Curves 692.6 Flow charts 74 2.6.1 Flow chart for analysis of I-shaped beam / Strong axis 74 2.6.2 Flow chart for analysis of I-shaped beam / minor axis 75Chapter 3 Illustrated Examples 76Chapter 4 Conclusions 100References 101Appendices 103 A-1. Plastic design 103 A-2. Design by shear and deflection 109
 1.American Institute of Steel Construction (1989), Manual of Steel Construction, Allowable Stress Design, 9th ed., AISC, Chicago, Illinois.2.American Institute of Steel Construction (1999), Manual of Steel Construction, Load and Resistance Factor Design, 3rd ed., AISC, Chicago, Illinois.3.American Institute of Steel Construction (2005), Manual of Steel Construction, Load and Resistance Factor Design, 13th ed., AISC, Chicago, Illinois.4.Bansal, J. (1991), “The Lateral Instability of Continuous Beams,” AISI Report No. 3, America Iron and Steel Institute, New York, August 1971.5.Barsoum, R.S. and Gallagher, R.H. (1970), “Finite Element Analysis of Torsional and Flexural-Torsional Stability Problems,” International Journal of Numerical Methods, Vol. 2, P.335-352.6.Bleich, Friedrich (1952), “Buckling Strength of Metal Structures,” McGraw-Hill, New York, Chapter 4.7.Chen, C.M. (2003), “Computer-Assisted Analysis and Design of Steel Beams based on AISC-LRFD,” Master Thesis, Dept. of Civil Engineering, National Chung-Hsing University, Taiwan.8.Chen, S.A. (2005), “Theory and Design for Steel Beams / Elastic and Ultimate Approaches,” Master Thesis, Dept. of Civil Engineering, National Chung-Hsing University, Taiwan.9.Chen, C.W. (2005), “Study on Provisions of Flexural Members – 2005 AISC Specification –,” Master Thesis, Dept. of Civil Engineering, National Chung-Hsing University, Taiwan.10.Clark, J.W. and Hill, H. N. (1960), “Lateral Buckling of Beams,” Journal of the Structure Division, ASCE, Vol. 86, ST7, P.175-196.11.Galambos, T.V. (1968), “Structural Member and Frames,” Prentice-Hall, Englewood Cliffs, New Jersey, P.80-158.12.Hancock, G.J. (1978), “Local Distortional and Lateral Buckling of I-Beams,” Journal of the Structural Division, ASCE, Vol. 104, ST11, P.1787-1800.13.Hechtman, R.A. and Hattrup, J.M. (1955), “Lateral Buckling of Rolled Steel Beams,” Journal of the Engineering Mechanics Division, ASCE, Vol. 81, P.797-830.14.Hoadley, Peter W. (1991), “Practical Significance of LRFD Beam Buckling Factors,” Journal of Structural Engineering, ASCE, Vol. 117, No. 3, P.988-996.15.Kubo, M. and Fukumoto, Y. (1988), “Lateral Torsional Buckling of Thin-Walled I-Beams,” Journal of the Structural Division, ASCE, Vol. 114, No. ST4, P.841-855.16.Lay, Maxwell G. and Galambos, Theodore V. (1967), “Inelastic Beams Under Moment Gradient, ” Journal of the Structural Division, ASCE, 93, ST1, P.381-39917.Liang, W.J. (2001), “Computer-Assisted Analysis and Design of Steel Beams based on AISC-ASD,” Master Thesis, Dept. of Civil Engineering, National Chung-Hsing University, Taiwan.18.McCormac, Jack C. (2007), “Structural Steel Design 4th ed,” Prentice Hall, P.236-33119.Powell, G. and Klingner, R.(1970), “Elastic Lateral Buckling of Steel Beams,” Journal of the Structural Division, ASCE, Vol. 96, No. ST9, P.1919-1932.20.Salvadori, M.G. (1955), “Lateral Buckling of I-Beams,” Transactions, ASCE, Vol. 120, P.1165-1167.21.Salmon, C.G. and Johnson, J. E. (1995), Steel Structures, 4th ed, Harper Collins, New York.22.Timoshenko, S. and Gere, J.M. (1969), “Theory of Elastic Stability,” 3rd ed., McGraw-Hill, New York, P.373-379.23.Trahair, N.S., Young, L.Pi. and Rajasekaran, S. (1992), “Energy Equation for Beam Lateral Buckling,” Journal of the Structural Division, ASCE, Vol. 118, No. 6, P.1462-1477.24.Vinnakota, S. (1977), “Inelastic Stability of Lateral Unsupported Beams,” Computes and Structures, Vol. 7, No. 3, P.15-27.
 國圖紙本論文
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 雙對稱I型梁偏心設計強度評估 2 鋼柱之行為與AISC設計準則 3 AISC柱基板設計之探討與比較

 1 1. 王偉霖，美國商業方法專利之最新發展與趨勢，科技法律評析，2期，頁1-29，2009。 2 2. 朱浩筠，由In re Bilski案看美國商業方法專利與適格標的判斷準則之發展，智慧財產權月刊，121期，頁53-82，2009。 3 3. 李治安，網路時代中商業方法可專利性之政策分析，經社法制論叢，29期，頁217-258，2002。 4 4. 李森堙，談日本商業方法專利制度與軟體專利審查基準有關之修正，智慧財產權管理，31期，頁36-41，2001。 5 5. 李森堙，淺談美國CAFC限縮商業方法發明專利標的適格性之新近判決，科技法律透析，21卷1期，頁26-30，2009。 6 6. 李禮仲，金融商品銷售糾紛與求償案例分析—以連動式債券銷售為中心，全國律師，13卷8期，頁25-44，2009。 7 7. 范銘祥，電腦時代之智慧財產權保護，智慧財產權月刊，87期，頁34-51，2006。 8 8. 胡心蘭、蔡岳勳，促進抑或是阻礙創新？從法律經濟學角度審視美國商業方法專利之適格性爭議–以In re Bilski案為例，政大智慧財產評論，7卷2期，頁125-176，2009。 9 9. 袁建中，電子商務專利發展現況與探討，智慧財產權月刊，27期，頁3-16，2001。 10 10. 陳歆，商業方法專利是否「傷」業方法專利，智慧財產權月刊，28期，頁3-19，2001。 11 11. 許曉芬，電腦軟體與商業方法之專利保護：歐洲發展，政大智慧財產評論，1卷1期，頁51-70，2003。 12 13. 黃文儀，電腦軟體發明之專利保護，智慧財產權月刊，100期，頁13-44，2007。 13 14. 黃帥升、謝富凱、廖倪凰，從保障投資人權益觀點論連動債券之法律關係，萬國法律，158期，頁74-83，2008。 14 15. 鄭中人，發明定義之探討，臺北大學法學論叢，46期，頁241-259，2000。 15 16. 鄭中人，論我國發明專利要件之立法政策及其演變，智慧財產權月刊，32期，頁3-40，2001。

 1 鋼柱之行為與AISC設計準則 2 熱處理對‘台農二號’番木瓜果實品質及抗氧化能力之影響 3 嗜熱鏈球菌ATCC 19258、保加利亞桿菌ATCC 11842、保加利亞桿菌MYL 2與龍根雙歧桿菌MYL 6抗氧化及抗動脈粥狀硬化之探討 4 論南西．法墨《蠍子之家》中的權力與生命 5 具反射鏡與散熱基板之砷化鎵薄膜太陽電池之製作與特性研究 6 利用有機金屬化學氣相沉積製備加強型氧化鋅薄膜電晶體之特性研究 7 磷化鋁銦鎵(橙光)發光二極體取光效率提升之研究 8 台灣批發業策略管理之研究 9 液晶顯示器畫素修補方法 10 多投影機自動拼貼系統 11 嬰兒保溫箱微氣候模式之研究 12 資通訊科技對臺灣電子產業生產力之影響分析 13 選擇國際快遞公司B2B業務之評選準則探討 14 可同時應用於測試壓縮和掃描鏈診斷提升之技術 15 勞資關係與職場偏差行為之關係－以員工協助方案與勞資關係實務為干擾變項

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室