跳到主要內容

臺灣博碩士論文加值系統

(3.235.120.150) 您好!臺灣時間:2021/08/06 02:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張凱博
研究生(外文):Kai-Po Chang
論文名稱:變量流作用下之固床工沖刷室內試驗研究
論文名稱(外文):Laboratory investigation of scour downstream of a grade-control structure under unsteady flows
指導教授:盧昭堯盧昭堯引用關係
學位類別:碩士
校院名稱:國立中興大學
系所名稱:土木工程學系所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:97
中文關鍵詞:固床工下游沖刷坑形態沖刷深度變量流
外文關鍵詞:grade-control structurescourunsteady flow
相關次數:
  • 被引用被引用:8
  • 點閱點閱:164
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
台灣西部許多河川之河床嚴重下降,河川及橋樑管理單位經常構築固床工,以穩定河床及減少橋墩基礎之沖刷。
本研究主要係探討固床工下游之跌水與水躍沖刷。首先,在清水沖刷之極限條件下,採砂質與礫質兩種底床質粒徑,配合兩種河床坡降、兩種固床工坡度及兩種流量,進行定量流之試驗。其次,在變量流方面,採四種單寬流量,進行不同峰型之入流歷線試驗。藉由室內試驗,探討沖刷坑之形態及變量流沖刷歷程之模擬。
定量流之試驗結果顯示,固定流量條件下,平衡沖刷坑形態及沖刷坑深度之時變特性皆可利用已知條件推估。此外,一般而言沖刷坑之最大沖刷深度、最大沖刷深度發生位置、長度及固床工最後一階塊體面上之水深隨底床坡度、比重福祿數、尾水深、臨界水深之增加而增加。
在變量流之試驗方面,首先利用定量流試驗沖刷深度數據,以疊加方式求得四種峰型之沖刷歷程,結果與變量流實測值大多一致,顯示在清水沖刷情況下,可利用定量流沖刷歷程來疊加預測階梯式之變量流沖刷歷程。其次,利用定量流時變歷線,經適當疊加,其結果亦與變量流試驗資料十分相近。


River bed elevations of many rivers in the west of Taiwan have lowered down seriously. River and bridge management bureaus often construct grade-control structures to stabilize the riverbeds and reduce the scouring of the pier foundations.

The aim of this research is to investigate the edge failures downstream of the grade-control structures. A series of experiments were conducted under the clear-water conditions with sand and gravel, two riverbed slopes, two ramp slopes for the grade-control structures, and two flow discharges. Furthermore, unsteady flow experiments with different types of hydrograph consisting of four unit discharges were performed. The shapes of the scour holes were discussed and the evolution of the scouring process for unsteady flows were simulated.

In regard to the results of the steady flow experiments, empirical formulas were developed to describe the equilibrium scour hole and the time variations of the scour depth. In general, the maximum scour depth and its location, the length of the scour hole, and the flow depth at the last step of the grade-control structure increase with an increase of the channel bed slope, densimetric Froude number, tail water depth and critical depth.

As for the results of the unsteady flow experiments, a concept of superposition is used to estimate the variations of the scour depth for four different types of hydrograph based on the measured scour data for the steady flows, and generally the results were consistent with the measured values for the unsteady flows. In addition, the evolution of the scour depth for an unsteady flow was also simulated by the superposition concept using the simulated scour evolution curves for the steady flows. Similarly, reasonably good results were obtained as compared with the measured scour evolution curve for the unsteady flow.



中文摘要 I
Abstract II
目錄 III
圖目錄 V
表目錄 VIII
照片目錄 IX
符號說明 X
第壹章 前言 1
1.1 研究動機 1
1.2 研究目的 2
1.3 研究內容 3
1.4組織內容 3
第貳章 文獻回顧 5
2.1水平護床工下游側深水沖刷 5
2.2水平射流沖刷 10
2.3傾角射流沖刷 15
2.4射流沖刷下之沖刷歷程 22
第參章 理論分析 24
3.1定量流清水沖刷 25
3.2變量流清水沖刷 30
第肆章 試驗方法 35
4.1 試驗設備 35
4.2 試驗條件規劃 41
4.3 試驗佈設 44
4.4 試驗方法與步驟 44
第伍章 結果與討論 49
5.1 定量流之沖刷坑試驗結果 49
5.2變量流沖刷歷程之模擬 68
第陸章 結論與建議 77
6.1 結論 77
6.2 相關建議 79
參考文獻 80
附錄 83
附錄A 84
附錄B 88
附錄C 94
附錄D 96



1.何淑君(2009),「透水框架群應用於固床工下游沖刷保護之研究」,碩士論文,國立中興大學土木工程研究所。
2.彭明正(2008),「變量流作用下非均勻橋墩之局部沖刷量測與模擬」,碩士論文,國立中興大學土木工程研究所。
3.彭思顯(1994),「投潭水作用下局部沖刷之動態研究」,碩士論文,國立中興大學土木工程研究所。
4.盧昭堯、賴進松及林詠彬(2008),「河道固床工破壞機制與減沖促淤新工法研擬」,經濟部水利署水利規劃試驗所委託研究計畫成果報告。
5.Bormann, N. E. and Julien, P. Y., (1991) "Scour Downstream of Grade-Control Structures" J. Hydraul. Engrg., vol.117(5), 579-594.
6.Blinco, P. H. and Partheniades, E. (1971). “Turbulence characteristics in free surface flows over smooth and rough boundaries,” J. Hydraul. Res. IAHR 9, 43-69.
7.Briaud, J. L., Chen, H. C., Kwak, K. W., Han, S.-W., and Ting, F. C. K. (2001). “Multiflood and multilayer method for scour rate prediction at bridge piers.” J. Geotech. Geoenviron. Eng., 127_2_, 114–125.
8.Breusers, H. N. C., (1966). “Conformity and time scale in two-dimensional local scour,” Proc. Symposium on model and prototype conformity: 1-8, Hydraulic research Laboratory Poona (also Delft Hydraulic, Delft, Publication 40).
9.Breusers, H. N. C. and Raukivi, A. J., (1991) "Scouring" A.A. Balkema, 123-142.
10.Chang, W. Y., Lai, J. S. and Yen, C. L. (2004). “Evolution of scour depth at circular bridge piers.” J. Hydraul. Eng., 130(9), 905-913.
11.Dey, S. and Sarkar, A., (2006) "Scour downstream of an apron due to submerged horizontal jets" Journal of Hydraulic Engineering, ASCE, vol.132(3), 246-257.
12.Farhoudi, J. and Smith, K. V. H. (1982). “Time scale for scour downstream of hydraulic jump, Proceedings ASCE, 108(HY10), 1147-1161.
13.Farhoudi, J. and Smith, K. V. H., (1985). "Local Scour Profiles Downstream of Hydraulic Jump" J. Hydraul. Res., 23(4), 343-358.
14.Gaudio, R., Marion, A., and Bovolin, V. (2000). "Morphological effects of bed sills in degrading rivers" J. Hydraul. Res., 38(2), 89-96.
15.Gaudio, R. and Marion, A. (2003). “Time evolution of scouring downstream of bed sills,” J. Hydraul. Res., 41(3), 271-284.
16.Hoffmans, G. J. C. M., (1990). “Concentration and flow velocity measurements in a local scour hole, Report 4-90, Faculty of civil Engineering, Hydraulic and Geotecnical Engineering Division, Delft Univercity of Technology, Delft.
17.Hoffmans, G. J. C. M., anf Verheji, H. J. (1997). “Scouring manual,” Balkema, Rotterdam, The Nethelands.
18.Laufer, J. (1951). “Investigation of turbulent flow in a two-dimensional channel,” NASA Report 1053, NACA Technical note 2123, 37(2), 1247-1266.
19.Lenzi, M. A., Marion, A., Comiti, F., and Gaudio, R. (2002). “Local scouring in low and high gradient streams at bed sills,” J. Hydraul. Res., 40(6), 731-739.
20.Meftah, M. B. and Mossa, M. M. (2006). “Scour holes downstream of bed sills in low-gradient channels,” J. Hydraul. Res., 44(4), 497-509.
21.Nezu, I. (1977). “Turbulence intensities in open-channel flow,” Proc. Japan Soc. Civil Engrg. 261, 67-76 (in Japanese).
22.Oliveto, G., and Hager, W. (2005). “Further results to time-dependent local scour at bridge elements.” J. Hydraul. Eng., 131(2), 97-105.
23.Pagliara, S., (2007) "Influence of sediment gradation on scour downstream of block ramps" J. Hydraul. Eng., 133(11), 1241-1248.
24.Sumer, B. M., Christiansen, N., and FredsØe, J. (1993). “Influence od cross section on wave scour around piles,” J. Waterw., port, Costal, Ocean Eng., 119(5), 477-495.
25.Tregnaghi, M., Marion, A., and Coleman, S. (2009). “Scouring at bed sills as a response to flush flodds,” J. Hydraul. Eng., 135(6), 466-475.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top