跳到主要內容

臺灣博碩士論文加值系統

(35.172.223.30) 您好!臺灣時間:2021/07/25 12:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鍾瑩
研究生(外文):Ying Chung
論文名稱:一-醯氧-三-甲基磺酸氧苯類化合物抑制乙醯膽鹼酯酵素、丁醯膽鹼酯酵素及膽固醇酯酵素之定量結構活性分析與研究
論文名稱(外文):Research on Quantitative Structure Activity Relationship for Inhibition of Acetylcholinesterase,Butyrylcholinseterase and Cholesterol Esterase by 1-Acyloxy-3-methanesulfonyloxybenzenes
指導教授:林家立林家立引用關係
指導教授(外文):Gialin Lin
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學系所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:175
中文關鍵詞:乙醯膽鹼酯酵素丁醯膽鹼酯酵素膽固醇酯酵素
外文關鍵詞:AcetylcholinesteraseButyrylcholinseteraseCholesterol Esterase
相關次數:
  • 被引用被引用:0
  • 點閱點閱:93
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文以一-醯氧-三-甲基磺酸氧苯類抑制劑對乙醯膽鹼酯酵素、丁醯膽鹼酯酵素及膽固醇酯酵素反應中酵素-抑制劑複合體抑制常數( pKI )進行定量結構活性關係( QSAR )分析。將酵素-抑制劑複合體的動力學常數─抑制常數(KI )對不同取代基之電子效應常數( σ* )、疏水性常數( π )以及立體效應常數( ES )作線性迴歸分析,並探討在此類化合物上置換不同取代基,對抑制三種酵素的效果有何影響,使我們對此類抑制劑的抑制機理有更深一層的認識,也分析一-醯氧-三-甲基磺酸氧苯類抑制劑在三種不同酵素酵素中的差異。
第二部分使用Gaussian 03理論計算軟體計算一-醯氧-三-甲基磺酸氧苯類抑制劑的能量與電荷,搭配NMR光譜結果,對抑制劑上不同取代基之電子效應常數( σ* )、立體效應常數( ES )以及疏水性常數( π )作定量結構活性關係( QSAR )分析,推測出三種不同酵素對此類抑制劑的反應快慢與安定性,也與前述部份研究相互應證。
目前市面上的藥劑開發研究,在新的藥物設計合成方面,主要先從實驗分析與預先模擬藥物反應是否發生,此一部分研究在藥物設計開發上是極重要的環節。若能有效的分析藥劑的性質及可行性,對未來實驗室藥劑的設計合成上可以帶來幫助、提高效益,期許未來可以應用在更廣的層面,為人類帶來多有助益的新藥研發訊息。


目錄
第一章  緒論 1
1-1 研究動機與目的 1
1-2 定量結構活性關係(QSAR) 2
1-2.1 定量結構活性關係 2
1-2.2 疏水性 4
1-2.3 電子效應 6
1-2.4 立體效應 8
1-2.5 Hammett Equation ─σmeta 和σpara 10
1-2.6 Taft equation ─脂肪族的極性效應 15
1-3酵素介紹 19
1-3.1 酵素特性 19
1-3.2 乙醯膽鹼酯酵素 21
1-3.3 丁醯膽鹼酯酵素 25
1-3.4 AChE與BChE催化酯類受質的水解反應 27
1-3.5 膽固醇酯酵素 29
1-3.6 CEase催化受質的水解反應 31
1-4 酵素動力學原理 33
1-4.1 抑制劑原理 33
1-4.2 可逆抑制劑 37
第二章 材料與方法 44
2-1 抑制劑的合成步驟 44
2-2 儀器設備 48
2-3  抑制劑的光譜數據 49
2-4 酵素動力學材料與方法 53
2-4.1 乙醯膽鹼酯酵素部份 53
2-4.2 丁醯膽鹼酯酵素部份 53
2-4.3 膽固醇酯酵素部份 54
2-5 動力學實驗方法與數據處理 57
2-5.1 停時驗析 (Stop-Time Assay)之操作步驟 57
2-5.2 可逆競爭性抑制反應 59
第三章 一-醯氧-三-甲基磺酸氧苯類化合物之定量結構活性分析( QSAR )結果 60
3-1 乙醯膽鹼酯酵素QSAR 結果 61
3-1.1 一-醯氧-三-甲基磺酸氧苯類化合物酵素動力學數據及QSAR分析 61
3-1.2 抑制劑a-g 抑制乙醯膽鹼酯酵素動力學數據與各項參數之單參數線性迴歸分析 63
3-1.3抑制劑a-g 抑制乙醯膽鹼酯酵素動力學數據與各項參數之雙參數線性迴歸分析 66
3-1.4抑制劑a-g 抑制乙醯膽鹼酯酵素動力學數據與各項參數之三參數線性迴歸分析 69
3-1.5抑制劑a-g 抑制乙醯膽鹼酯酵素與其QSAR影響參數(取代基電子效應常數(σ*)、疏水性常數(π)、立體常數 (Es))對其pKI之線性迴歸結果分析 70
3-2 丁醯膽鹼酯酵素QSAR 結果 75
3-2.1一-醯氧-三-甲基磺酸氧苯類化合物酵素動力學數據及QSAR分析 75
3-2.2抑制劑a-g 抑制丁醯膽鹼酯酵素動力學數據與各項參數之單參數線性迴歸分析 77
3-1.3抑制劑a-g 抑制丁醯膽鹼酯酵素動力學數據與各項參數之雙參數線性迴歸分析 80
3-2.4抑制劑a-g 抑制丁醯膽鹼酯酵素動力學數據與各項參數之三參數線性迴歸分析 83
3-2.5抑制劑a-g 抑制丁醯膽鹼酯酵素與其QSAR影響參數(取代基電子效應常數(σ*)、疏水性常數(π)、立體常數 (Es)對其pKI之線性迴歸結果分析 84
3-3 膽固醇酵素QSAR 結果 89
3-3.1一-醯氧-三-甲基磺酸氧苯類化合物酵素動力學數據及QSAR分析 89
3-3.2抑制劑a-g 抑制膽固醇酯酵素動力學數據與各項參數之單參數線性迴歸分析 91
3-3.3抑制劑a-g 抑制膽固醇酯酵素動力學數據與各項參數之雙參數線性迴歸分析 94
3-2.4抑制劑a-g 抑制膽固醇酯酵素動力學數據與各項參數之三參數線性迴歸分析 97
3-3.5抑制劑a-g 抑制膽固醇酵素與其QSAR影響參數(取代基電子效應常數(σ*)、疏水性常數(π)、立體常數 (Es))對其pKI之線性迴歸結果分析 98
3-4 一-醯氧-三-甲基磺酸氧苯類抑制劑抑制乙醯膽鹼酯酵素、丁醯膽鹼酯酵素及膽固醇酵素的定量結構活性分析結果整理表 103
第四章 Gaossian03理論計算在化學方面的應用 105
4-1 理論計算原理簡介 106
4-1.1 量子化學 107
4-1.2 計算化學的理論 109
4-1.3 全初始法(ab initio Method) 110
4-1.4 密度泛函理論 ( Density functional Theory,DFT )112
4-1.5 B3LYP理論 116
4-1.6 基底函數組 ( Basis Set ) 118
4-1.7 分裂基底 (Split basis set) 122
4-1.8 極化函數 (Polarized basis set) 123
4-1.9 擴散函數 (Diffuse function) 124
4-1.10 Gaussian 03 軟體計算 125
4-1.11 模型正確性及方法正確性 126
4-1.12 Gaussian 03 模組中建立計算 128
4-2 本論文採用的計算方法及實驗目的 131
4-3 抑制劑之理論計算結果與分析 132
4-3.1 一-醯氧-三-甲基磺酸氧苯類抑制劑 a-g的理論計算結果 132
4-3.2 一-醯氧-三-甲基磺酸氧苯類抑制劑理論計算數據與動力學數據的分析結果 141
4-3.3 一-醯氧-三-甲基磺酸氧苯類抑制劑最低能量、偶極矩與取代基常數QSAR分析結果 158
第五章 結論 165
參考文獻....................................................170


參考文獻

1. Wang Liansheng, Han Shuokui., Beijing: Environmental Science Press of China,1993.
2. L.H. Hall, L. B. Kier, Environ. Toxicol. Chem., 1986, 5, 333‐337.
3. T. W. Schultz, N. L. Wyatt, Lin D T. Bull., Environ. Contam. Toxicol., 1990, 44, 47‐72.
4. A. Sabljic, Sci. Total Environ., 1991, 109/110, 197‐220.
5. M. H. Abraham, H. S. Chadha, F. Martins et al., Pestic. Sci., 1999, 55, 78‐88.
6. S. Karabunarliev, O. G. Mekenyan, W. Karcher, Quant. Struct.‐Act. Relat., 1996, 15,302‐310.
7. Y. Tang, K. X. Chen, H. L. Jiang, Euro. J. Med. Chem., 1998, 33,647‐658.
8. H. M. G. Van Der Werf, C. Zimmer, Chemosphere, 1998, 36, 2225‐2249.
9. M. L. Tosato, C. Chiorboli, L. Eriksson et al. , Sci. Total Environ., 1991, 109/110,307‐325.
10. Physical Organic Chemistry 2th, Neil S. Isaacs, Longman 1995 , pp.150.
11. L.P.Hammett, J.Am.Chem.Soc., 1937, 59, 96.
12. Physical Organic Chemistry 2th, Neil S. Isaacs, Longman 1995 , pp.150.
13. HR Horton, LA Moran, RS Ochs, JD Rawn, KG Scrimgeour. “Principles of Biochemistry”. 4th ed. Prentice-Hall. 2002:129-130
14. HR Horton, LA Moran, RS Ochs, JD Rawn, KG Scrimgeour. “Principles of Biochemistry”. 4th ed. Prentice-Hall. 2002:149-155
15. HR Horton, LA Moran, RS Ochs, JD Rawn, KG Scrimgeour. “Principles of Biochemistry”. 4th ed. Prentice-Hall. 2002:6
16. Rosenberry TL. Acetylcholinesterase. AdvEnzymol Relat Areas Mol Biol. 1975; 43:103–218.
17. D.M. Quinn. Acetylcholinesterase: enzyme structure reaction dynamics and virtual transition states. Chem. Rev. 1987; 87:955–979
18. Massoulie J, Bon S. The Molecular forms of Cholinesterase and Acetylcholinesterase in Vertebrates. Annual Reviews in Neuroscience 1982; 5: 57-106
19. Nelson DL, Cox MM. “Lehninger principles of biochemistry”. 4th ed. New York: WH Freeman and Company. 2005:72
20. Sussman JL, Harel M, Frolow F, Oefner C, Goldman A, Toker L, Silman I. Atomic structure of acetylcholinesterase from Torpedo californica: A prototypic acetylcholine-binding protein. Science 1991; 253:872–879.
21. Rosenberry TL. Acetylcholinesterase. Adv Enzymol Relat Areas Mol Biol. 1975; 43:103–218
22. Soreq H, Zakut H. “Human cholinesterases and anticholinesterases”. New York: Academic; 1983.
23. Giacobini, E. “In Alzheimer_s Disease: Molecular Biology to Therapy: Becker R., Giacobini E”. Boston; Birkhauser; 1997:187–204.
24. Giacobini E. “Cholinestease inhibitors do more than inhibit cholinesterase. In: Becker R, Giacobini E, editors. Alzheimer’s disease: Molecular biology to therapy“. Boston;Birkhauser; 1997:188–204.
25. Taylor P. ”In: Gilman AG, Nies AS, Rall TW, Taylor P, editors. The pharmacological basis of therapeutics”. 5th edition. New York: Macmillan; 1975:131–150.
26. Soreq H, Zakut H. “Human cholinesterases and anticholinesterases”. New York: Academic;1983.
27. Taylor P. Development of acetylcholinesterase inhibitors in the therapy of Alzheimer’s disease. Neurology 1998;51(1,Suppl 1):S30–S67.
28. Sussman JL, Harel M, Frolow F, Oefner C, Goldman A, Toker L, Silman1. Atomic structure of acetylcholinesterase from Torpedo californica:A prototypic acetylcholine-binding protein. Science 1991; 253:872-879.
29. Gialih Lin, Hsin-Chang Tseng, Ai-Chi Chio, Tsao-Ming Tseng, Bo-Yi Tsai. A rate determining step change in the pre-steady state of acetylcholinesterase inhibitions by 1,n-alkane-di-N-butylcarbamates. Bioorganic & Medicinal Chemistry Letters 2005; 15:951-955
30. Bar-On P, Millard CB, Harel M, Dvir H, Enz A, Sussman JL, Silman I. Kinetic and structural studies on the interaction of cholinesterases with the anti-Alzheimer drug rivastigmine. Biochemistry 2002; 41:3555–3564.
31. Sultan Darvesh, David Hopkins, Changiz Geula. Neurobiology of Butyrylvholinesterase. Neuroscience 2003; 111:131-138
32. Mendel B,Rudney H. Studies on cholinesterase: Cholinesterase and pseudo-cholinesterase. Biochem J 1943; 37(1):59–63
33. Masson P, Froment M-T, Fort S, Ribes F, Bec N, Balny C, Schopfer LM. Butyrylcholinesterase-catalyzed hydrolysis of N-methylindoxyl acetate: Analysis of volume changes upon reaction and hysteretic behavior. Biochim Biophys Acta 2002; 1597:229–243.
34. E. Stedman, L. K. Easson. Choline-esterase: An enzyme present in the blood-serum of the horse. Biochem. J 1932; 26:2056-2066
35. Chatonnet A,Lockridge O. Comparison of butyrylcholinesterase and acetylcholinesterase. Biochem J 1989; 15;260(3):625–634
36. Lockridge, O. Complete amino acid sequence of human serum cholinesterase. J. Biol. Chem 1987; 262:549–557
37. D Grob, JL Lilienthal Jr, AM Harvey, BF Jones - Bull. Johns Hopkins Hosp The administration of di-isopropyl fluorophosphates (DFP) to man. I.Effect on plasma and erythrocyte cholinesterase; general systemic effects; use in study of hepatic function and erythropoiesis; and some properties of plasma cholinesterase. Bull John Hopkins Hosp 81:217-244
38. Lockridge O, Eckerson HW, La Du BN. Interchain disulfide bonds and subunit organization in human serum cholinesterase. J Biol Chem 1979; 254(17):8324–8330
39. Quinn DM. Acetylcholinesterase: Enzyme structure, reaction dynamics, and virtual transition states. Chem Rev 1987; 87:955–979.
40. Harel M, Quinn DM, Nair HK, Silman I, Sussman JL. The X-ray structure of a transition state analog complex reveals the molecular origins of the catalytic power and substrate specificity of acetylcholinesterase. J Am Chem Soc 1996; 118:2340–2346.
41. Bartolucci C, Perola E, Cellai L, Brufani M, Lamba D. ”Back door” opening implied by the crystal structure of a carbamoylated acetylcholinesterase. Biochemistry 1999; 38:5714–5719.
42. Lombardo D. Modification of the essential amino acids of human pancreatic carboxylic-ester hydrolase. Biochim Biophys Acta. 1982; 700(1):67–74
43. Gallo LL, Clark SB, Myers S, Vahouny GV. Cholesterol absorption in rat intestine: role of cholesterol esterase and acyl coenzyme A:cholesterol acyltransferase. J Lipid Res 1984; 25(6):604–612
44. Sutton, LD, Stout, JS,Hosie L, Spencer PS, Quinn DM. Phenyl- n-butylborinic acid is a potent transition state analog inhibitor of lipolytic enzymes. Biochem Biophys Res Commun 1986; 134:386-392.
45. J. S. Stout , L. D. Sutton, D. M. Quinn.Dependence of transition-state structure on acyl chain length for cholesterol esterase-catalyzed hydrolysis of lipid p-nitrophenyl esters J. Am. Chem. Soc 1990; 112:8398-8403
46. Sutton LD, Froelich S, Hendrickson HS, Quinn DM. Cholesterol esterase catalyzed hydrolysis of mixed micellar thiophosphatidylcholines: a possible charge-relay mechanism. Biochemistry 1991; 30:5888–5893
47. D.M. Quinn. Acetylcholinesterase: enzyme structure reaction dynamics and virtual transition states. Chem. Rev 1987; 87:955–979
48. LL Gallo, SB Clark, S Myers, and GV Vahouny Cholesterol absorption in rat intestine: role of cholesterol esterase and acyl coenzyme A:cholesterol acyltransferase. J. Lipid Res 1984; 25:604-612
49. Bhat SG, Brockman HL. The role of cholesteryl ester hydrolysis and. Purification and characterization. Eur J Biochem 1982; 116:221-225
50. Hui DY. Molecular biology of enzymes involved with cholesterol esterase hydrolysis in mammalian tissues. Biochim Biophys Acta 1996; 1303:1-14.
51. Myers-Payne SC, Hui DY, Brockman HL, Schroeder F. Cholesterolesterase: a cholesterol transfer protein. Biochemistry 1995; 34(12):3942–3947
52. Gialih Lin, Wei-Cheng Liaoa, Shyh-Ying Chiou. Quantitative structure–activity relationships for the pre-steady-state inhibition of cholesterol esterase by 4-nitrophenyl-n-substituted carbamates. Bioorganic & Medicinal Chemistry 2000; 11:2601-2607
53. Brady L, Brzozowski AM, Derewenda ZS, Dodson E, Dodson G, Tolley S, Turkenburg JP, Christiansen L, Huge-Jensen B, Norskov L. A serine protease triad forms the catalytic centre of a triacylglycerol lipase. Nature 1990; 343(6260):767–770
54. D. L. Nelson, M. M. Cox ,Lehninger principles of biochemistry, 4th ed., New York: WH Freeman and Company, 2005, pp. 206.
55. D. Lombardo, O. Guy. Biochim. Biophys. Acta., 1980, 611:147–155.
56. R. H. Abeles and A. L. Maycock. Acc. Chem. Res., 9 1976,pp. 313–319.
57. W. E. Momsen and H. L. Brockman. Biochem. Biophys. Acta., 1997, 486, 103‐113.
58. T. P. Kenakin, Pharmacologic Analysis of Drug–Receptor Interaction, 3rd edn.,Lippincott‐Raven, Philadelphia, 1997.
59. Gialih Lin,* Yu-Chen Liu, Yon-Gi Wu and Yu-Ru Lee. J. Phys. Org. Chem. 2004, 17,707-714
60. Physical Organic Chemistry 2th, Neil S. Isaacs, Longman 1995 , pp.173.
61. L.P.Hammett, Physical Organic Chemistry, McGraw-Hill Book Co., Inc., New York, NY, 1940, Chaps. III,IV,VII
62. Taft, R. W. J. Am. Chem. Soc. 1952, 74, 2729 and 3120.
63. Järv, J.; Kesvatera, T.; Aaviksaar, A. Eur. J. Biohem. 1976, 67, 315.
64.Scott Gronert* and James R. Keeffe*, J. Org. Chem. 2006, 71,5959-5968
65..Jie Song and Mark S. Gordon*, Carol A. Deakyne, Wencui Zheng. J. Phys. Chem. A 2004, 108, 11419-11432.
66.A. Szabo; N. S. Ostlund, Modern Quantum Chemistry. 1st ed.; McGRAW-HILL: New York: 1982.
67R. Eisberg, R. Rensick著, 單溥 陳自強 黃棟洲譯, 量子物理學, 復漢出版社, 1988.
68.劉東昇, 化學量子力學. 徐氏基金會: 1998.
69.I. N. Levine, Quantum Chemistry. 5th ed.; Prentice Hall: 2000.
70.蘇世剛; 牟中原, 化學 1989, 47, 308.
71. A. E. Frisch; Foresman, J. B., Exploring Chemistry with Electronic Structure Methods. 2nd ed.; Gaussian, Inc.: 1996.
72.W. J. Hehre; J. Yu; P. E. Klunzinger; Lou, L., A Brief Guide to Molecular
Mechanics and Quantum Chemical Calculations. Wavefunction, Inc: Irvine, 1998.
73.W. J. Hehre; L. Radom; P. v. R. Sckleyer; Pople, J. A., ab initio Molecular Orbital Theory. John Wiley & Sons: New York, 1986.
74.P. Hohenberg; W. Kohn, Inhomogeneous Electron Gas. Phys. Rev. B 1964, 136, 864.
75.J. B. Foresman; A. Frisch, Exploring Chemistry with Electronic Structure Methods. 2nd ed.; 1964.
76.Allinger, N. L., J. Am. Chem. Soc. 1977, 99, 8127-8134.
77.Burkert, U.; Allinger, N. L., Molecular Mechanics. American Chemical Society,Washington D. C.: 1982.
78.Frenkel, D.; Smit, B., Understanding Molecular Simulation. Academic Press, 2002.
79.W. Kohn; Sham, L. J., Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. A 1965, 140, 1133.
80.A. D. Becke, Density-functional thermochemistry. III. The role of exact
exchange. J. Chem. Phys. 1993, 98, 5648.
81.J.H. Van Vleck, nonorthogonality and ferromagnetism, Phys, Rev, 49, 232,1936.
82.M. A. Frisch; J. A. Pople; J. S. Binkley, Self-consistent molecular orbital
methods 25. Supplementary functions for Gaussian basis sets. J. Chem. Phys. 1984, 80, 3265.
83.C. Lee; W. Yang; R. G. Parr, Development of the Colle-Salvetti
correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785.
84.C. J. Cramer, Essentials of Computational Chemistry – Theories and Models. John Wiley & Sons: New York, 2002.
85.R. McWeeny; Dierksen, G., Self-Consistent Perturbation Theory. II. Extension to Open Shells. J. Chem. Phys. 1968, 49, 4852.
86.J. J. P. Stewart, Optimization of parameters for semiempirical methods II. Applications. J. Comput. Chem. 1989, 10, 221.
87.J. J. P. Stewart, Reply to ldquoComments on a comparison of AM1 with the recently developed PM3 methodrdquo. J. Comput. Chem. 1990, 11, 543.
88.J. J. P. Stewart, Optimization of parameters for semiempirical methods. III Extension of PM3 to Be, Mg, Zn, Ga, Ge, As, Se, Cd, In, Sn, Sb, Te, Hg, Tl, Pb, and Bi. J. Comput. Chem. 1991, 12, 320.
89.S. Huzinaga, Gaussian Basis Sets for Molecular Calculations. Elsevier: New York, 1984.
90.Sousa, S. F.; Fernandes, P. A.; Ramos, M. J. J. Phys. Chem. A 2007, 111, 10439. fig 1.
91.Slater, J. C. Phys. Rev. 1930, 36, 57.
92.Szabo, A.; Ostlund, N. S. Modern Quantum Chemistry Macmillan: New York, 1982.
93.A. Rios; T. L. Amyes; Richard*, J. P., Formation and Stability of Organic Zwitterions in Aqueous Solution:Enolates of the Amino Acid Glycine and Its Derivatives. J. Am. Chem. Soc. 2000, 122, 9373.
94.顧子瑄, 三-醯氧-甲基磺酸酯苯類化合物對乙醯膽鹼酯酶、丁醯膽鹼酯酶、假單胞菌屬脂肪酶及膽固醇酶之抑制機理, 國立中興大學化學研究所論文, 2005.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 二醇類之單、雙取代-氮-正丁基氨基甲酸抑制劑對乙、丁醯膽鹼酯酵素、膽固醇酯酵素及脂肪酵素抑制機理之研究
2. 長鏈雙氨基甲酸取代化合物之雙酵素抑制研究
3. 二醇氨基甲酸類對膽鹼酯酵素、膽固醇酯酵素、脂肪酵素抑制之前穩定動力學研究
4. 胺基甲酸類對乙及丁醯膽鹼酯酵素抑制反應機理-週邊陰離子活化位置之探討
5. 芳香族硫代氨基甲酸類化合物抑制乙醯膽鹼酯酵素、丁醯膽鹼酯酵素、膽固醇酯酵素、青黴素酶及凝血酶反應機理之研究
6. 鎖鏈型硫代氨基甲酸抑制乙醯膽鹼酯酵素、丁醯膽鹼酯酵素、及膽固醇酯酵素反應機理之研究
7. 長鏈氨基己酸酯類對脂肪酵素、膽固醇酵素、乙醯膽鹼酯酵素及丁醯膽鹼酯酵素抑制機理之研究
8. 比較氨基及硫代氨基甲酸類化合物對絲氨酸水解酶親核力
9. 對位聯苯二酚磺酸類化合物對乙、丁醯膽鹼酯酵素、膽固醇酯酵素及脂肪酵素抑制機理之研究
10. 二醇甲苯磺酸類化合物對乙醯膽鹼酯酵素、丁醯膽鹼酯酵素、膽固醇酯酵素及脂肪酵素抑制機理
11. 氨基甲酸類抑制劑對磷脂酶酵素A2之抑制機理研究
12. 癸二醇單、雙取代氨基甲酸類化合物對乙、丁醯膽鹼酯酵素、膽固醇酯酵素及脂肪酵素抑制機理之研究
13. 苯二酚立體障礙性雙取代氨基甲酸對乙醯膽鹼酯酵素、丁醯膽鹼酯酵素、膽固醇酯酵素及脂肪酵素抑制機理之研究
14. 苯二酚雙取代氨基甲酸抑制劑對乙醯膽鹼酯酵素、丁醯膽鹼酯酵素、膽固醇酯酵素及脂肪酵素抑制機理之研究
15. 長鏈二醇類單.雙取代-氮-正丁基氨基甲酸抑制劑對乙.丁醯膽鹼酯酵素.膽固醇酯酵素及脂肪酵素抑制機理研究
 
1. 新非類固醇抗發炎藥物設計根據三-醯氧-一-氮-正辛烷氨基甲酸苯類化合物對蛇毒、蜂毒、豬胰臟甲二型磷脂&;#37238;酵素抑制之定量結構活性關係
2. 四-醯氧-四&;apos;&;apos;-丁基氨基甲酸-四,四&;apos;&;apos;-聯苯類抑制劑構形分析
3. 對位聯苯二酚磺酸類化合物抑制乙醯膽鹼酯酵素、丁醯膽鹼酯酵素、膽固醇酯酵素及脂肪酵素之構形改變的計算與分析
4. 鄰、間、對位苯雙取代氨基甲酸化合物之氨基甲酸碳-氮鍵之構型分析及其對絲胺酸水解酵素定量結構分析
5. 硫代胺基甲酸對青黴素酶和抗凝血酶的定量活性結構關係及其類順反異構之動力核磁共振
6. 胺基甲酸類對乙及丁醯膽鹼酯酵素抑制反應機理-週邊陰離子活化位置之探討
7. 氨基甲酸酯類分子對接於乙醯膽鹼酯酵素
8. 氨基甲酸化合物抑制青黴素酶與籠狀化合物抑制乙和丁醯膽鹼酯酵素之分子對接研究
9. 綠色快速分析方法之開發-微波輔助石墨烯纖維製備暨微萃取技術結合氣相層析儀分析水樣中有機氯化合物
10. 流感病毒核蛋白E339…R416的鹽橋鍵結對流感病毒抑制劑是一個可行的標的
11. 以科技接受模式探討農夫市集虛擬社群知識分享之研究—以合樸農學市集為例
12. 探討消費者之餐飲業服務補償知覺正義對其信任、承諾與正面口碑的影響:以性別為干擾
13. 運用於細胞內生物感測器的研究
14. 膠囊設計對藥物釋放行為影響之定量研究
15. 可辨識G-四股DNA結構的不對稱新分子