跳到主要內容

臺灣博碩士論文加值系統

(3.95.131.146) 您好!臺灣時間:2021/07/26 04:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳逸平
研究生(外文):Yi-Ping Chen
論文名稱:啟發式演算法於污水下水道及地下水優選問題之研究
論文名稱(外文):Application of Heuristic Algorithms on sewer network and groundwater optimization problems
指導教授:林明德林明德引用關係
學位類別:碩士
校院名稱:國立中興大學
系所名稱:環境工程學系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:105
中文關鍵詞:分散搜尋法強化螞蟻演算法下水道管網地下水管理
外文關鍵詞:Scatter searchEnhanced Ant-Tabusewer networkgroundwater management
相關次數:
  • 被引用被引用:4
  • 點閱點閱:151
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在過往環工複雜優選問題的研究中,線性規劃、非線性規劃或是動態規劃等常作為主要的求解工具,但若遭遇到較為複雜的問題時,即可能造成求解品質的大幅滑落。近年來陸續有學者以啟發式演算法取代傳統的方法求解問題,並且獲得不錯的成果。因此本研究將兩種受到廣泛運用的啟發式演算法—分散搜尋法和強化螞蟻演算法運用於環工界中常見的兩種複雜優選問題─下水道管網和地下水管理的最佳化問題。
本研究主要是利用分散搜尋法和強化螞蟻演算法分別結合下水道和地下水模式,求解下水道的最小建置成本、地下水的最小復育成本以及地下水污染源和抽水源的鑑定問題,並比較評估此兩種優選技術的求解品質及穩定度。研究的結果顯示分散搜尋法和強化螞蟻演算法皆可有效的解決相關的問題,不管是在成本的最小化或是污染與抽水源鑑定的問題上,都能成功的獲得高品質的優選解。

In the past decades, linear programming, nonlinear programming and dynamic programming were often employed to solve complicated environmental engineering optimization problems. However, they were frequently trapped in local optima and failed to solve complicated and multimodal problems efficiently and effectively. Therefore, this study developed two widely used heuristic algorithms — Scatter Search (SS) and Enhanced Ant-Tabu (EAT) to solve sewer network and groundwater management optimization problems.
This study integrated SS and EAT with sewer system and groundwater simulation models, and search for the minimum sewer system construction cost, the minimum groundwater remediation cost, and identification of groundwater pollution and pumping sources. The solutions obtained by SS and EAT are also compared to evaluate the optimization quality and stability of the two techniques. The results indicate that SS and EAT are both able to successfully achieve the high-quality optimization solutions.

中文摘要 i
表目錄 vi
圖目錄 viii
第一章 前言 1
1-1 研究動機 1
1-2 研究目的 2
1-3 研究內容 3
1-4 本文架構 3
第二章 文獻回顧 4
2-1 污水下水道管網優選問題 4
2-2 地下水管理問題 7
2-2-1 地下水復育優選問題 7
2-2-2 地下水污染源鑑定問題 8
2-2-3 地下水抽水源鑑定問題 9
2-2-4 地下水模擬模式 10
2-3 啟發式演算法 13
2-3-1 分散搜尋法 13
2-3-2 強化螞蟻演算法 15
2-4 文獻總結及研究方向 18
第三章 研究方法 19
3-1 優選問題 19
3-1-1 污染下水道管網優選問題 19
3-1-2 地下水管理問題 22
3-1-2-1 地下水復育優選問題 22
3-1-2-2 地下水污染源鑑定問題 24
3-1-2-3 地下水抽水源鑑定問題 24
3-2 數值模擬模式 26
3-2-1 污水下水道水力模式 26
3-2-1-1 污水下水道水力公式 26
3-2-1-2 污水下水道水力特性推導 26
3-2-1-3 污水下水道水力特性曲線應用 28
3-2-2 地下水傳輸模式 29
3-2-2-1 地下水流模式MODFLOW 29
3-2-2-2 污染物傳輸模式MT3DMS 30
3-3 啟發式演算法 32
3-3-1 分散搜尋法 32
3-3-1-1 分散搜尋法之組成要素 32
3-3-1-2 分散搜尋法流程 36
3-3-2 強化螞蟻演算法 38
3-3-2-1 強化螞蟻演算法之組成要素 38
3-3-2-2 強化螞蟻演算法流程 41
3-4 最佳化模式之建立流程 43
3-4-1 污水下水道管網最佳化模式 43
3-4-2 地下水管理最佳化模式 45
3-4-2-1 地下水復育最佳化模式 45
3-4-2-2 污染源鑑定最佳化模式 47
3-4-2-3 抽水源鑑定最佳化模式 49
第四章 研究案例描述 51
4-1 下水道管網案例 51
4-2 地下水管理案例 54
4-2-1 地下水復育案例 54
4-2-2 污染源鑑定案例 58
4-2-3 抽水源鑑定案例 61
第五章 結果與討論 69
5-1 下水道管網案例之結果與討論 69
5-2 地下水管理案例之結果與討論 75
5-2-1 地下水復育案例優選結果 75
5-2-2 污染源鑑定案例優選結果 80
5-2-3 抽水源鑑定案例優選結果 84
5-2-3-1 抽水源鑑定案例一 85
5-2-3-2 抽水源鑑定案例二 88
5-2-3-3 抽水源鑑定案例三 92
5-3 各案例之求解時間及次數探討 95
第六章 結論與建議 98
6-1 結論 98
6-2 建議 99
參考文獻 100



Afshar, M. H., Afshar, A., Marino, M. A. and Darbandi, A.A.S. (2006). “Hydrograph-based storm sewer design optimization by genetic algorithm.” Canada Journal of Civil Engineering, 33, 319-325.
Ayvaz, M. T., and Karahan, H. (2008). “A simulation/optimization model for the identification of unknown groundwater well locations and pumping rates.” Journal of Hydrology, 357(1-2), 76-92.
Bagtzoglou, A. C., Tompson, A. F. B., and Dougherty, D. E. (1992). “Projection functions for particle-grid methods” Numerical Methods for Partial Differential Equations, 8(4), 325-340.
Brown, P. L., Guerin, M., Hankin, S. I., and Lowson, R. T. (1998). “Uranium and other contaminant migration in groundwater at a tropical Australian Uranium Mine.” Journal of Contaminant Hydrology, 35, 1-3.
Campos, V., Glover, F., Laguna, M., and Marti, R. (2001). “An experimental evaluation of a scatter search for the linear ordering problem” Journal of Global Optimization, 21(4), 397-414.
Chang, L.C., Shoemaker, C.A., and Liu, P. L. F. (1992). “Optimal Time Varying Pumping Rates for Groundwater Remediation: Application of a Constrained Optimal Control Algorithm.” Water Resources Research, 28(12), 3157-3173.
Charalambous, C., and Elimam, A. A. (1990). “Heuristic design of sewer networks.” Journal of Environmental Engineering, 116(6), 1181-1199.
Chou, C. S., and Song, Y. H. (1997). “Ant Colony-Tabu approach for combined heat and power economic dispatch.” Proceedings of the Universities Power Engineering Conference, 2, 605-608.
Cibulka, A. (1997). “Optimization of groundwater remediation by adaptive simulated annealing.” Proceedings of the European Water Resources Association Conference, København.
Culver T. B., and Shenk, G. W.(1998). “Dynamic optimal ground water remediation by granular activated carbon.” Journal of Water Resources Planning and Management, 124(1), 59-64.
Dajani, J. S., Hasit, Y., and McCullers, S. (1977). “Mathematical programming in sewer network design.” Engineering Optimization, 3(1), 27-35.
Desher, D. P., and Davis, P. K. (1986). “Designing sanitary sewers with microcomputers.” Journal of Environmental Engineering, 112(6), 993-1007.
Dorigo, M., and Gambardella, L, (1997). “ Ant colony system: A cooperative learning approach to the traveling salesman problem” IEEE Transactions on Evolutionary Computation, 1(1), 53-66.
Dorigo, M., Maniezzo, V., and Colorn, A. (1996). “ Ant system: optimization by a colony of cooperating agents.” IEEE Transactions on Systems, 26(1), 29-41.
Glover, F. (1990). “Tabu search: a tutorial.” Interface, 20, 74-94.
Glover, F. (1994). “Genetic Algorithms and Scatter Search: Unsuspected Potentials.” Statistics and Computing, 4, 131-140.
Gorelick, S. M., Voss, C. I., Gill, P. E., Murray, W., Saunders, M. A., and Wright, M. H. (1984). “Aquifer Reclamation Design: The Use of Contaminant Transport Simulation Combined With Nonlinear Programing.” Water Resources Research, 20(4), 415-427.
Gupta, A., Mehndiratta, S. L., and Khanna, P. (1983). “Gravity Wastewater Collection Systems Optimization.” Journal of Environmental Engineering, 109(5), 1195-1209.
Gupta, J. M., Agrawal, S, K., and Khanna, P. (1976). “Optimal Design of Wastewater Collection Systems.” Journal of Environmental Engineering Division, 102(5), 1029-1041.
He, L., Huang, and Lu, H. W. (2008) “Health-Risk-Based Groundwater Remediation System Optimization through Clusterwise Linear Regression.” Environmental Science and Technology, 42(24), 9237-9243.
Hilton, A. B. C., and culver, T.B. (2000). “Constraint-handling methods for optimal ground water remediation design by genetic algorithms.” Journal of Water Resources Planning and Management, 126(3), 128-137.
Holland, M. E. (1966). Computer Model of Wastewater Collection Systems, Harvard Water Resources Group, Harvard University, Cambridge, Mass.
Hung, W. N. N., Song, X., Aboulhamid, E. M., and Driscoll, M. A. (2002), “BDD minimization by scatter search.” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 21(8), 974-979.
Kulkarni, V. S., and Khanna, P. (1985). “Pump wastewater collection systems optimization.” Journal of the Environmental Engineering, 111(5), 589-601.
Kuo, C. H., Michel, A. N., and Gray, W. G.. (1992). “Design of optimal pump-and-treat strategies for contaminated groundwater remediation using the simulated annealing algorithm.” Advances in Water Resources, 15(2), 95-105.
Laguna, M, and Armentano, V. A. (2003). “Lessons from Applying and Experimenting with Scatter Search.” To appear in Adaptive Memory and Evolution: Tabu Search and Scatter Search.
Laguna, M, and Armentano, V. A. (2003). “Lessons from Applying and Experimenting with Scatter Search.” To appear in Adaptive Memory and Evolution: Tabu Search and Scatter Search.
Liang, L. Y., Thompson, R. G., and Young, D. M. (2004). “Optimising the design of sewer networks using genetic algorithms and tabu search.” Journal of Engineering, Construction and Architectural Management, 11(2), 101–112.
Lin, M. D., Liu, Y. H., Liu, G. F., and Chu, C. W. (2007). “Scatter search heuristic for least-cost design of water distribution networks.” Engineering Optimization, 39(7), 2007.
Lin, X., and Yang, Y. (1991). “The optimization of groundwater supply system in SHI JIAZHUANG city, China.”. Water Science and Technology, 24(11), 71-76.
Mahinthakumar, G., and Sayeed, M. (2005). “Hybrid genetic algorithm - Local search methods for solving groundwater source identification inverse problems.” Journal of Water Resources Planning and Management, 131(1), 45-57.
Mart’i, R., Laguna, M., and Glover, F. (2006). “Principles of scatter search.” European Journal of Operational Research, 169(2), 359-372.
Maskey, S., Jonoski, A., and Solomatine, D. P.(2002). “Groundwater Remediation Strategy Using Global Optimization Algorithms.” Journal of Water Resources Planning and Management, 128(6), 431-440.
Mazzini, R. (1998) “Estudo de meta-heuristicas populacionais para a programação de maquinas paralelas com tempos de preparação dependentes da sequencia e datas de entrega.” Doctoral Thesis, Faculdade de Engenharia Eletrica e de Computacao, Universidade Estadual de Campinas.
McKinney, D. C., G.B., Gates, G. B., and M. D. L. (1994). “Aquifer Remediation Design: Nonlinear Programming and Genetic Algorithms.” Proceedings of the 21th Annual Conference on Water Policy and Management: Solving the Problems.” 254-257.
Merkle, D., and Middendorf, M. (2004). “Competition controlled pheromone update for ant colony optimization.” Proceedings of 4th International Workshop ANTS 2004, 3172, 95-105.
Miles, S. W., and Heaney, J. P. (1988). “Beter than optimal method for designing drainage systems.” Journal of Water and Resources Planning and Management, 114(5), 477–499.
Nebro, A. J., Luna, F., Alba, E., Dorronsoro, B., Durillo, J. J., and Beham, A. (2008). “AbYSS: Adapting Scatter Search to Multiobjective Optimization.” IEEE Transactions on Evolutionary Computation, 12(4), 439-457.
Pan, T. C. and Kao, J. J. (2009). “GA-QP model to optimize sewer system design.” Journal of Environmental Engineering, 135(1), 17-24.
Pezeshk, S., Helweg, O. J., and Oliver, K. E. (1994). “Optimal operation of ground-water supply distribution systems,” journal of water resources planning and management , 120(5), 573-585.
Ren, X., and Minsker, B. (2005). “Which Groundwater Remediation Objective is Better:A Realistic One or a Simple One?.” Journal of Water Resources Planning and Management, 131(5), 351-361.
Robinson, D. K., and Labadie, J. W. (1981). “Optimal design of urban storm water drainage system. International symposium on urban hydrology, hydraulics, and sediment control.” University of Kentucky, Lexington, ky, 145-156.
Sinha, E., and Minsker, B. S. (2007). “ Multiscale island injection genetic algorithms for groundwater remediation.” Advances in Water Resources, 30(9), 1933-1942.
Skaggs, T.H., and Kabala,Z. J. (1994). “Recovering the release history of a groundwater contaminant,” Water Resources Research, 30(1), 71-79 (1994) .
Song, Y. H., and Chou, C. S. (1999). “Large-scale economic dispatch by artificial ant colony search algorithms” Electric Machines and Power Systems, 27(7), 679-690.
Stuetzle, T. and Hoos,H. (1997). “MAX-MIN Ant System and local search for the traveling salesman problem” Proceedings of the IEEE Conference on Evolutionary Computation, ICEC, 309-314.
Takahashi, S., and Peralta, R. C. (1995). “Optimal perennial yield planning for complex nonlinear aquifers: Methods and examples,” Advances in Water Resources, 18(1), 49-62.
Yeh, S. F., Lin, M. D., and Tsai , K.T. (2008). “Development of Cost Functions for Open Cut and Jacking Methods for Sanitary Sewer System Construction in Central Taiwan.” Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 12(4), 282-289.
Yeh, W. W. G. (1992). “System Analysis in ground-water planning and management,” journal of water resources planning and management, 118(3), 224-237.
土壤及地下水整治網,http://sgw.epa.gov.tw/public/。
內政部營建署,「污水下水道設計指南」,2003。
王聖丰,「禁忌搜尋法於污水下水道最佳化之應用」,碩士論文,國立中興大學環境工程系所, 2006。
王銘熙,「應用人工補助法改善海水入侵現象之探討」,碩士論文,中原大學土木工程學系所,2000。
地下水觀測網, http://www.drc.ntu.edu.tw/gwater/applications-01.php。
張宏岳,「污水下水道管網系統最佳化水理設計之研究」,碩士論文,國立中興大學環境工程學系所,2003。
陳淇汾,「地下水污染源歷程重建-模擬退火演算法」,碩士論文,國立交通大學環境工程系所,2006。
黃佳雯 ,「地下水模式工具於污染控制場址範疇界定之研析」,碩士論文,國立臺灣大學環境工程學研究所,2006。
劉易璁,「地下水污染源歷程重建-模擬退火演算法」,碩士論文,國立交通大學環境工程系所,2006。
劉盈利 ,「螞蟻演算法與禁忌搜尋法混合模式於配水管網設計最佳化之應用」,碩士論文,國立中興大學環境工程學系所,2004。
歐陽嶠暉,「下水道工程學(增訂版)」,長松出版社,桃園,2003。
賴彌輝 ,「物理性擋水牆與地下水抽取處理系統最佳配置之研究」,碩士論文,國立中興大學環境工程學系所,2007。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 黃德祥(1986):輔導人員『專業枯竭』成因與克服之道。諮商與輔導,12,2-4。
2. 黃崇儒。(2000)。中文版運動員因應技能量表的修訂。北體學報,7,1-14。
3. 陳瓊茶。 (2005)。大專運動員完美主義、目標取向及特質性焦慮對競技倦怠之相關與預測研究。大專體育學刊,7(1),101-113。
4. 盧俊宏、林登松、黃璟蕙、曹育翔(2004)。運動員樂觀傾向與受傷後情緒反應與因應行為的關係研究。體育學報,36,107-118。
5. 蔡英美、陳龍弘。 (2005)。自我批評與樂觀對運動員競技倦怠的影響。大專體育學刊,7(4),71-83。
6. 黃欽永。(2008)。北京2008年奧運會男女手球攻守技術之比較。運動教練科學,73-84。
7. 盧俊宏、陳龍弘、卓國雄(2006)。Raedeke和smith運動員倦怠問卷(ABQ)之信效度研究。體育學報,39(3),83-94。
8. 莊艷惠(1999):運動員過度訓練與身心倦怠之因素探討。國立臺灣體育學院學報,6,331-365。
9. 楊紀瑜。(2005)。籃球裁判壓力來源之研究。國立體育學院論叢,16(3),17-29。
10. 黃欽永、張簡坤明、林永華、 張景星。(2009)。2006年世界大學女子手球錦標賽不同位置射門技術分析,運動教練科學,75-89。
11. 陳建瑋、季力康(2009)。2×2目標取向與希望對大專運動員競賽壓力因應策略之預測。體育學報,42(4),71-86。
12. 聶喬齡。 (2000)。運動中身心倦怠(Burnout)的成因與相關研究探討。中師體育,2,50-56。
13. 陳美榕。 (1998)。大專運動選手身心倦怠因素探討。臺灣體育,97,16-18。
14. 賴文璇、黃英哲(2008)。認知評估之中介效應在社會支持與能力知覺對競賽壓力因應策略的影響。臺灣運動心理學報,12,1-24。
15. 莊艷惠。(1999)。運動員過度訓練與身心倦怠之因素探討。國立臺灣體育學院學報, 5(下), 331-365。