跳到主要內容

臺灣博碩士論文加值系統

(44.220.44.148) 您好!臺灣時間:2024/06/18 13:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳彥彤
研究生(外文):Yen-Tung Chen
論文名稱:奈米碳管/二氧化鈦複合材料光降解液相苯、甲苯、乙苯、二甲苯之研究
論文名稱(外文):Photocatalytic degradation of BTEX from aqueous solution with CNTs/TiO2 nanocomposites
指導教授:盧重興盧重興引用關係
指導教授(外文):Chung-sying Lu
學位類別:碩士
校院名稱:國立中興大學
系所名稱:環境工程學系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:105
中文關鍵詞:甲苯乙苯二甲苯奈米碳管/二氧化鈦光催化
外文關鍵詞:BenzeneTolueneEthylbenzeneXyleneCarbon nanotubes/titanium dioxidePhotocatalytic
相關次數:
  • 被引用被引用:2
  • 點閱點閱:198
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究係利用奈米碳管/二氧化鈦之奈米複合材料分解水中芳香環類溶劑苯(benzene)、甲苯(toluene)、乙苯(ethylbenzene)、二甲苯(xylene),簡稱BTEX。研究使用的奈米碳管(carbon nanotubes, CNTs)以次氯酸鈉改質,增加CNTs表面含氧官能基,再與二氧化鈦(titanium dioxide, TiO2)表面的氫氧基以類似酯化型式(ester-type)相互接合,使TiO2有效分佈於CNTs表面,減少顆粒的聚集,增加表面活性區。在不同碳管比例下之CNT/TiO2對BTEX之轉化率依序為10%>5%>20%>30%。由批次光降解實驗顯示,10%-CNT/TiO2在400oC鍛燒下,劑量1.0g/L時對BTEX有較佳的轉化率和反應速率,並且比TiO2和Degussa P25高。背景實驗之結果看出,非光催化所造成BTEX之去除效率皆在19.6%以下,說明整體光反應過程以光催化為主要的機制。水中影響因子實驗顯示,當pH在中性範圍內、添加濃度範圍在10mM以下的H2O2時,對BTEX之轉化率與反應速率皆有提升的趨勢,然而,受離子強度的影響並不顯著。
綜合以上研究結果,添加適量的CNTs與TiO2複合將能有效提升對BTEX轉化率以及反應速率,於廢水處理中具有相當的應用潛力。

Carbon nanotube/titanium dioxide(CNT/TiO2) nanocomposites were prepared by the sol-gel method and CNTs were oxidized by NaOCl solution before prepared the nanocomposites. TiO2 nanoparticles were chemically absorbed at CNTs defect sites via an ester-type linkage (esterification) between carboxylic acid groups of the oxidized CNTs surfaces and the hydroxyl groups at the surface of the TiO2 nanoparticles. CNT/TiO2 can enhance the photocatalytic activity of benzene, toluene, ethylbenzene and xylene (BTEX) photodegradation in an aqueous solution since CNTs will increase the specific surface area(reactive sites) and reduce the rate of electron/hole pairs recombination.
The conversion and rate constant of BTEX photodegradation for CNT/TiO2 had optimal conditions at 1.0 g/L, 10%CNT contents, and 400oC calcinations temperature, respectively, which were much higher than TiO2 and Degussa P25. The reaction obeys pseudo-first-order kinetics. The removal efficiency for BTEX were less than 19.6% from the background experiment, which including photolysis and dark reaction. This means that major mechanism in the whole photoreaction process was photocatalytic degradation. At the influence of aqueous parameters on the rate constant of BTEX photodegradation increased with solution pH and the H2O2 dosage at low concentration, but appeared no remarkable change with solution ionic strength. A comparative study of the effect of initial BTEX concentration on the reaction rate showed that the rate constant decreased with increased the initial concentration of BTEX under the same conditions.
This suggests that CNTs exhibit a synergistic effect and can increase the efficiency of electron transfer from TiO2 to CNTs in enhancing the photocatalytic activity. Thus, this study showed the potential use of CNT/TiO2 nanocomposite in degradation of BTEX from wastewater.


目錄
摘 要....................................................i
ABSTRACT.................................................ii
英文縮寫說明...............................................iv
目錄.......................................................v
圖目錄.....................................................ix
表目錄.....................................................xi
第一章 前言...............................................1
1-1 研究緣起............................................1
1-2 研究目的............................................3
1-3 研究內容............................................4
第二章 文獻回顧............................................5
2-1 BTEX之來源及其物化特性................................5
2-2 目前處理BTEX技術.....................................6
2-2-1 物理處理法..........................................7
2-2-2 化學處理法..........................................8
2-2-3 生物處理法..........................................8
2-3 光化學理論..........................................9
2-3-1 光化學分解反應.......................................9
2-3-2 光觸媒.............................................12
2-3-3 能隙..............................................13
2-3-4 TiO2/UV系統.......................................15
2-4 影響TiO2光催化反應的因素.............................19
2-4-1 本質因素:.........................................19
2-4-1-1 晶型結構...........................................19
2-4-1-2 添加劑量...........................................20
2-4-2 環境因素:.........................................20
2-4-2-1 離子強度...........................................20
2-4-2-2 pH值..............................................21
2-4-2-3 溫度..............................................23
2-4-2-4 氫氧自由基.........................................24
2-5 CNT/TiO2複合材料之製備與應用.........................27
2-5-1 CNT/TiO2之製備方法.................................27
2-5-2 CNT/TiO2之應用.....................................29
2-6 反應動力模式........................................33
第三章 實驗方法與設備......................................35
3-1 CNT/TiO2複合材料製備方法.............................35
3-1-1 CNTs製備..........................................35
3-1-2 CNTs改質..........................................36
3-1-3 CNT/TiO2製備......................................37
3-2 複合光觸媒特性分析...................................38
3-2-1 場發射掃描式電子顯微鏡(FE-SEM)........................38
3-2-2 粉末X光繞射儀(PXRD).................................38
3-2-3 比表面積分析(BET)...................................39
3-2-4 紫外光/可見光光譜儀(UV-vis)..........................40
3-2-5 光激發螢光光譜儀(PL).................................41
3-3 BTEX分析方法與儀器設備...............................42
3-4 CNT/TiO2光降解BTEX之實驗方法流程.....................43
3-4-1 實驗試藥與材料......................................47
3-4-2 實驗裝置...........................................48
3-5 批次光降解實驗......................................50
3-5-1 背景實驗 ..........................................50
3-5-1-1 直接光解實驗........................................50
3-5-1-2 暗反應實驗.........................................51
3-5-2 光降解實驗.........................................51
第四章 結果與討論.........................................55
4-1 CNT/TiO2光降解BTEX批次實驗..........................55
4-1-1 背景實驗...........................................55
4-1-2 劑量影響...........................................57
4-1-3 鍛燒溫度之影響......................................59
4-1-4 CNTs添加比例之影響..................................61
4-1-5 CNT/TiO2與商用TiO2之比較............................63
4-1-6 CNT/TiO2反應機制...................................65
4-2 複合光觸媒特性分析...................................67
4-2-1 場發射掃描式電子顯微鏡(FE-SEM)........................67
4-2-2 X光粉末繞射儀(PXRD).................................69
4-2-3 比表面積及孔洞分析(BET)..............................70
4-2-4 紫外光/可見光(UV-vis)光譜............................73
4-2-5 光激發螢光(PL)光譜..................................74
4-3 水中影響因子實驗.....................................76
4-3-1 離子強度之影響......................................76
4-3-2 pH值之影響.........................................78
4-3-3 氫氧自由基之影響.....................................80
4-3-4 溫度之影響.........................................82
4-3-5 初始濃度之影響......................................85
第五章 結論與建議.........................................89
5-1 結論..............................................89
5-2 建議..............................................92
參考文獻 .................................................93


圖目錄
圖2-1 半導體受光照射之變化圖(垰田博史,2003)....................15
圖2-2 半導體受光激發後電子電洞對生成及介面反應示意圖(Suri, 1993)...18
圖3-1 SPME分析示意圖........................................42
圖3-2 批次實驗反應器設備.....................................45
圖3-3 實驗流程圖............................................46
圖4-1 背景實驗(直接光解與暗反應)對去除BTEX之去除率...............56
圖4-2 CNT/TiO2劑量對光催化降解BTEX之轉化率....................58
圖4-3 CNT/TiO2劑量對光催化降解BTEX之速率常數k ..................58
圖4-4 不同鍛燒溫度下CNT/TiO2對光催化降解BTEX之轉化率............60
圖4-5 不同鍛燒溫度下CNT/TiO2對光催化降解BTEX之速率常數k ..........60
圖4-6 不同CNTs比例的CNT/TiO2對光催化降解BTEX之轉化率............62
圖4-7 不同CNTs比例的CNT/TiO2對光催化降解BTEX之速率常數k.........62
圖4-8 CNT/TiO2、TiO2與P25對BTEX之吸附效率....................64
圖4-9 CNT/TiO2、TiO2與P25對光催化降解BTEX之轉化率.............64
圖4-10 CNT/TiO2、TiO2與P25對光催化降解BTEX之速率常數k ..........65
圖 4-11 CNT/TiO2複合材料受光激發產生電子電洞對及表面反應之示意圖...67
圖4-12 FE-SEM影像 ..........................................68
圖4-13 FE-SEM影像 ..........................................68
圖4-14 CNT/TiO2、TiO2與CNTs之XRD圖譜........................70
圖4-15 氮氣等溫吸脫附........................................72
圖4-16 CNT/TiO2、TiO2與P25之UV-vis光譜......................74
圖4-17 CNT/TiO2、TiO2與P25之PL光譜 ..........................75
圖4-18離子強度對10%-CNT/TiO2光催化降解BTEX之轉化率.............77
圖4-19 離子強度對10%-CNT/TiO2光催化降解BTEX之速率常數k..........77
圖4-20 pH值對10%-CNT/TiO2光催化降解BTEX之轉化率...............79
圖4-21 pH值對10%-CNT/TiO2光催化降解BTEX之速率常數k............79
圖4-22 氫氧自由基對10%-CNT/TiO2光催化降解BTEX之轉化率...........81
圖4-23 氫氧自由基對10%-CNT/TiO2光催化降解BTEX之速率常數k........82
圖4-24 溫度對10%-CNT/TiO2光催化降解BTEX之轉化率...............83
圖4-25 溫度對10%-CNT/TiO2光催化降解BTEX之速率常數k.............84
圖4-26 lnk對應1/T求取活化能之迴歸曲線圖........................84
圖4-27 反應初始濃度對10%-CNT/TiO2光催化降解BTEX之濃度曲線.......86
圖4-28 反應初始濃度對10%-CNT/TiO2光催化降解BTEX之速率常數k......86
圖4-29 速率常數之倒數1/k(min)對BTEX反應初始濃度C0(mg L-1)......88


表目錄
表2-1 BTEX物化特性表.........................................5
表2-2 國內地下水水質標準......................................6
表2-3 各類光觸媒之能隙能量與激發所需之臨界波長...................14
表2-4 氧化物種之相對氧化能力(Prengle et al., 1978)............17
表2-5 利用CNT/TiO2光催化降解氣相與液相中污染物之相關文獻 ..........32
表3-1 GC/FID 之分析操作條件..................................43
表3-2 緩衝溶液配製表.........................................49
表4-1 CNT/TiO2、TiO2和P25之比表面積與孔洞特性.................72
表4-2 CNT/TiO2與TiO2之能隙能量..............................73

[1]Ahmmad, B., Kusumoto, Y., Somekawa, S., Ikeda, M. (2008). 〃Carbon nanotubes synergistically enhance photocatalytic activity of TiO2〃, Catal. Commun. 9, 1410-1413.

[2]Alfano, O.M., Cabrera, M.I., Cassano, A.E. (1997). 〃Photocatalytic Reactions Involving Hydroxyl Radical Attack〃, J. Catal. 172, 370-379.

[3]Almeida, C.M.M. and Boas, L.V. (2004). 〃Analysis of BTEX and other substituted benzenes in water using headspace SPME-GC–FID: method validation〃, J. Environ. Monitor. 6, 80–88.

[4]Anheden, M., Goswami, D.Y., Svedberg, G. (1996). 〃Photocatalytic Treatment of Wastewater From 5–Fluorouracil Manufacturing〃, J. Solar Energy Eng. 118, 1182.

[5]Anpo, M., Takeuchi, M. (2003). 〃The design and development of highly reactive titanium oxide photocatalysts operating under visibal light irradiation〃, J. Catal. 216, 505-516.

[6]Arambarri, I., Lasa, M., Garcia, R. and Millan, E. (2004). 〃Determination of fuel dialkyl ethers and BTEX in water using headspace solid-phase microextraction and gas chromatography–flame ionization detection〃, J. Chromatogr. A. 1033, 193–203.

[7]Arvin, E., Engelsen, P., Sebber, U. (2005). 〃Biodegradation of gasoline compounds (BTEX) in water works sand filter〃, Water Supply. 4, 29–33.

[8]Aryal, S., Kim, C.K., Kim, K.W., Khil, M.S., Kim, H.Y. (2008). 〃Multi-walled carbon nanotubes/TiO2 composite nanofiber by electrospin-ning〃, Mater. Sci. Eng. C 28, 75-79.

[9]Banerjee, S., Wong, S.S. (2002). 〃Synthesis and Characterization of Carbon Nanotube−Nanocrystal Heterostructures〃, Nano Lett. 2, 195-200.

[10]Chen, D. and Ray, A.K. (1998). 〃Photodegradation kinetics of 4-nitrophenolin TiO2 suspension〃, Water Res. 32, 3223-3234.

[11]Chan, C.C., Chang, C.C., Hsu, W.C., Wang, S.K. and Lin, J. (2009). 〃Photocatalytic activities of Pd-loaded mesoporous TiO2 thin films〃, Chem. Eng. J. 152, 492–497.

[12]Chen ,Y., Crittenden, J.C., Hackney, S., Sutter, L., Hand, D.W. (2005). 〃Preparation of a Novel TiO2-Based p−n Junction Nanotube Photocatalyst〃, Environ. Sci. Technol. 39, 1201-1208.

[13]Childs, L.P. and Ollis, D.F. (1980). 〃Is Photocatalysis Catalytic〃, J. Cata. 66, 383-390.

[14]Chun, H.-D., Park, J.K. (1994). Haz. Waste Haz. Mater. 11: 501.

[15]Cho, J., Schaab, S., Roether, J.A., Boccaccini, A.R. (2008). 〃Nanostructured carbon nanotube/TiO2 composite coatings using electrophoretic deposition (EPD)〃, J. Nanopart. Res. 10, 99-105.

[16]Choy, W.K., Chu, W. (2005). 〃Destruction of o-Chloroaniline in UV/TiO2 Reaction with Photosensitizing Additives〃, Ind. Eng. Chem. Res. 44, 8184-8189.

[17]Doong, R.A., Chang, W.H. (1998). 〃Photoassisted iron compound catalytic degradation of organophosphorous pesticides with hydrogen peroxide〃, Chem. 37, 2563-2572.

[18]Daifullah, A.A.M., Girgis, B.S. (2003). 〃Impact of surface characteristics of activated carbon on adsorption of BTEX〃. Colloids Surf. A: Phys. Eng.Aspects 214, 181–193.

[19]Davis, R.J., Grainer, J.L., Neal, G.O. and Wu, I.W. (1994). 〃Photocatalytic Decolorization of Wastewater Dyes〃, Water Environ. Res. 66 50-53.

[20]Datsyuk, V., Kalyva , M., Papagelis, K., Parthenios, J., Tasis, D., Siokou, A., Kallitsis, I., Galiotis, C. (2008). 〃Chemical oxidation of multiwalled carbon nanotubes〃, Carbon 46, 833–840.

[21]Daneshvar, N., Rabbani, M., Modirshahla, N., Behnajady, M.A. (2004). 〃Kinetic modeling of photocatalytic degradation of Acid Red 27 in UV/TiO2 process〃, J. Photochem. & Photobiol. A: Chem. 168, 39-45.

[22]Dhananjeyan, M.R., Annapoorani, R., Renganathan, R. (1997). 〃A comparative study on the TiO2 mediaetd photo-oxidation of uracil, thymine and 6-methyluracil〃, J. Photochem. & Photobiol. A: Chem. 109: 147-153.

[23]Dionysiou, D.D., Suidan, M.T., Bekou, E., Baudin, I., Laˆıne, J.-M. (2000). 〃Effect of ionic strength and hydrogen peroxide on the photocatalytic degradation of 4-chlorobenzoic acid in water〃, Appl. Catal. B: Environ. 26: 153.

[24]Di Paola, A., Garcia-Lopez, E., Ikeda, S., Marc, G., Ohtani, B., Palmisano, L. (2002). 〃Photocatalytic degradation of organic compounds in aqueous systems by transition metal doped polycrystalline TiO2〃, Catal. Today, 75, 87-93.

[25]Ezquerro, O., Ortiz, G., Pons, B. and Tena, M. T. (2004). 〃Determination of benzene, toluene, ethylbenzene and xylenes in soils by multiple headspace solid-phase microextraction〃, J. Chromatogr. A 1035: 17–22.

[26]Fernandez-Ibanez, P., Blanco, J., Malato, S., Nieves, F.J. (2003) 〃Application of the colloidal stability of TiO2 particles for recovery and reuse in solar photocatalysis〃, Water Res. 37, 3180-3188.

[27]Elke, K., Jermann, E., Begerow, J. and Dunemann, L. (1998). 〃Determination of benzene, toluene, ethylbenzene and xylenes in indoor air at environmental levels using diffusive samplers in combination with headspace solid-phase microextraction and high-resolution gas chromatography–flame ionization detection〃, J. Chromatogr. A 826: 191–200.

[28]Fujishima, A., Rao, T.N. and Tryk, D.A. (2000). 〃Titanium dioxide photocatalysis〃. J. Photochem. Photobiol. C: Photochem. Rev. 1, 1–21.

[29]Farhadian, M., Larroche, C., Borghei, M., Troquet, J., Vachelard, C. (2006). 〃Bioremediation of BTEX-contaminated groundwater through bioreactors〃, 4mecolloque Franco-Roumain de chimie applique’e, Universite’ Blaise Pascal, Clermont-Ferrand, France, 28 June–2 July 2006, p. 438.

[30]Florez Menendez, J.C., Fernandez Sanchez, M.L., Sanchez Ur’ıa, J.E., Fernandez Mart’ınez, E., Sanz-Medel, A. (2000). 〃Static headspace, solid-phase microextraction and headspace solid-phase microextraction for BTEX determination in aqueous samples by gas chromatography〃, Anal. Chim. Acta. 415, 9–20.

[31]Fukuzawa. K.S. and Kwan, T. (1968). 〃Photoadsorption and Photodesorption of Oxygen on Titanium Dioxide〃, J. Catal. 11, 364-369.

[32]Gao, B., Chen, G.Z. and Puma, G.L. (2009). 〃Carbon nanotubes/titanium dioxide (CNTs/TiO2) nanocomposites prepared by conventional and novel surfactant wrapping sol–gel methods exhibiting enhanced photocatalytic activity〃, Appl. Catal. B: Environ. 89, 503-509.

[33]Guerin, T.F. (2002). 〃A pilot study for the selection of a bioreactor for remediation of groundwater from a coal tar contaminated site〃, J. Hazard. Mater. 89, 241–252.

[34]Gomes da Silva, C.S.C. (2008). 〃Synthesis, Spectroscopy and Characterization of Titanium Dioxide Based Photocatalysts for the Degradative Oxidation of Organic Pollutants〃, Thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemical and Biological Engineering, at the Faculty of Engineering, University of Porto.

[35]Gomes da Silva, C., Faria, J.L. (2003). 〃Photochemical and photocatalytic degradation of an azo dye in aqueous solution by UV irradiation〃, J. Photochem. Photobiol. A: Chem. 155: 133–143.

[36]Hernadi, K., Ljubovic, E., Seo, J.W., Forro’, L. (2003). Acta Mater. 51: 1447.

[37]Haarstrick, A., Kut, O.M., Heinzle, E. (1996). 〃TiO2-Assisted Degradation of Environmentally Relevant Organic Compounds in Wastewater Using a Novel Fluidized Bed Photoreactor〃, Environ. Sci. Technol. 30, 817-824.

[38]Hisanaga, T., Harada, K., Tanaka, K. (1990). 〃Photocatalytic degradation of organochlorine compounds in suspended TiO2〃, J. Photochem.and Photobiol. A: Chem. 54, 113-118.

[39]Hu, G., Meng, X., Feng, X., Ding, Y., Zhang, S., Yang, M. (2007). J. Mater. Sci. 42: 7162.

[40]Jitianu, A., Cacciaguerra, T., Benoit, R., Delpeux, S., Beguin, F., Bonnamy, S. (2004). 〃Synthesis and characterization of carbon nanotubes-TiO2 nanocomposites〃, Carbon 42, 1147.

[41]Kamat, P.V., Bedja, I., Hotchandani, S. (1994). 〃Photoinduced Charge Transfer between Carbon and Semiconductor Clusters. One-Electron Reduction of C60 in Colloidal TiO2 Semiconductor Suspensions〃, J. Phys. Chem. 98, 9137–9142.

[42]Kamble, S.P., Sawant, S.B. and Pangarkar, V.G. (2006). 〃Photocatalytic degradation of m-dinitrobenzene by illuminated TiO2 in a slurry photoreactor〃, J. Chem. Technol. and Biotechnol. 81, 365-373.

[43]Khan, F.I., Husain, T., Hejazi, R. (2004). 〃An overview and analysis of site remediation technologies〃, J. Environ. Manage. 71, 95–122

[44]Kiriakidou, F., Kondarides, D.I. and Verykios, X.E. (1999). 〃The effect of operational parameters and TiO2-doping on the photocatalytic degradation of azo-dyes〃, Catalysis Today 54, 119-130.

[45]Koziel, J., Jia, M.Y. and Pawliszyn, J. (2000). 〃Air sampling with porous solid-phase microextraction fibers〃, Anal. Chem. 72, 5178–5186.

[46]Ksibi, M., Zemzemi, A., Boukchina, R. (2003). 〃Photocatalytic degradability of substituted phenols over UV irradiated TiO2〃, J. Photochem. and Photobiol. A:Chem. 159, 61-70.

[47]Kumar, S., Davis, A.P. (1997). 〃Heterogeneous photocatalytic oxidation of nitrotoluenes〃, Water Environ. Res. 69: 1238-1245.

[48]Kuo, C.Y. (2009). 〃Prevenient dye-degradation mechanisms using UV/TiO2/carbon nanotubes process〃, J. Hazard. Mater. 163, 239–244.

[49]Lagalante, A.F. and Felter, M.A. (2004). 〃Silylation of acrylamide for analysis by solid-phase microextraction/gas chromatography/ion-trap mass spectrometry〃, J. Agric. Food Chem. 52, 3744–3748.

[50]Li, K., Santilli, A., Goldthorp, M., Whiticar, S., Lambert, P. and Fingas, M. (2001). 〃Solvent vapour monitoring in work space by solid phase micro extraction〃, J. Hazard. Mater. 83, 83–91.

[51]Lee, M.R., Chang, C.M. and Dou, J. (2007). 〃Determination of benzene, toluene, ethylbenzene, xylenes in water at sub-ng l-1 levels by solid-phase microextraction coupled to cryo-trap gas chromatography–mass spectrometry〃, Chemosphere. 69, 1381–1387.

[52]Li, X.H., Niu, J.L., Zhang, J., Li, H.L., Liu, Z.F. (2003). 〃Labeling the Defects of Single-Walled Carbon Nanotubes Using Titanium Dioxide Nanoparticles〃, J. Phys. Chem. B 107, 2453–2458.

[53]Lu, C., Su, F., Hu, S. (2008). 〃Surface modification of carbon nanotubes for enhancing BTEX adsorption from aqueous solutions〃, Appl. Surf. Sci. 254, 7035-7041.

[54]Lynch, J.M., Moffat, A.J. (2005). 〃Bioremediation–prospects for the future application of innovative applied biological research〃, Ann. Appl. Biol. 146, 217–221.

[55]Lettmann, C., Hildenbrand, K., Kisch, H., Macyk, W., Maier, W.F. (2001). 〃Visible light photodegradation of 4-chlorophenol with a coke-containing titanium dioxide photocatalyst〃, Appl. Catal. B 32, 215–227.

[56]Langwaldt, J.H., Puhakka, J.A. (2000). 〃On-site biological remediation of contaminated groundwater: a review〃, Environ. Pollut. 107, 187–197.

[57]Maria, A.J., Yeung, K.L. (2001). 〃Gas-phase photo-oxidation of toluene using nanometer-size TiO2 catalysts〃, App. Catal. B: Environ. 29, 327-336.

[58]Mills, A., Hunte, S.L. (1997). 〃An overview of semiconductor photocata-
lysis〃, J. Photochem. Photobiol. A 108, 1-35.

[59]Martı’nez, S., Cuervo-Lo’pez, F.M., Gomez, J. (2007). 〃Toluene mineraliza-tion by denitrification in an up flow anaerobic sludge blanket (UASB) reactor〃, Biores. Technol. 98, 1717–1723.

[60]Mascolo. G., Ciannarella, R., Balest, L., Lopez, A. (2007). 〃Effectiveness of UV-based advanced oxidation processes for the remediation of hydrocarbon pollution in the groundwater: A laboratory investigation〃, J. Hazard. Mater. 152, 1138-1145.

[61]Mengyue, Z., Shifu, C., Yaowu, T. (1995). 〃Photocatalytic degradation of organophosphorus pesticides using thin films of TiO2〃, J. Chem. Technol. Biotechnol. 64, 339-344.

[62]Molinari, R., Pirillo, F., Falco, M., Loddob, V., Palmisano, L. (2004). 〃Photocatalytic degradation of dyes by using a membrane reactor〃, Chem. Engin. and Process. 43, 1103-1114.

[63]Moreno-Castilla, C., Maldonado-Hodar, F.J., Carraso-Marin, F., Rodriguez-Castellon, E. (2002). 〃Surface Characteristics of Titania/Carbon Composite Aerogels〃, Langmuir 18: 2295–2299.

[64]Muruganandham, M., Swaminathan, M. (2004). 〃Solar photocatalytic degradation of a reactive azo dye in TiO2-suspension〃, Solar Energy Mater. & Solar Cells. 81, 439-457.

[65]Ollis, D.F., Pelizzetti, E., Serpone, N. (1991). 〃Photocatalyzed destruction of water contaminants〃, Environ. Sci. Technol. 25, 1522-1529.

[66]Pacheco, J.E., Prairie, M.R., Yellowhorse, L. (1993). 〃Photocatalytic Destruction of Chlorinated Solvents in Water With Solar Energy〃, J. Solar Energy Eng. 115, 123-129.

[67]Orlanducci, S., Sessa, V., Terranova, M.L., Battiston, G.A., Battiston, S. and Gerbasi, R. (2006). 〃Nanocrystalline TiO2 on single walled carbon nanotube arrays: Towards the assembly of organized C/TiO2 nanosystems〃, Carbon. 44, 2839–2843.

[68]Pawliszyn, J. (1990). 〃Solid phase microextraction with thermal desorp-
tion using fused silica optical fiber〃, Anal. Chem. 62, 2145-2148.

[69]Peterson, M.W., Turner, J.A., Nozik, A.J. (1991). 〃Mechanistic studies of the photocatalytic behavior of titania: particles in a photoelectrochemical slurry cell and the relevance to photodetoxification reactions〃, J. Phys. Chem. 95, 221-225.

[70]Purdon, A.D., Tinker, D.O., Neumann, A.W. (1980). 〃The temperature dependence of surface tension and critical micelle concentration of egg lysolecithin〃, Colloid & Polymer Sci. 258, 1062-1069.

[71]Prengle, H.W. and Mauk, C.E. (1978). 〃New Technology: Ozeone/UV Chemical Oxidation Waste Water Process for Metal Complexes, Organic Species and Disinfection〃, AIChE Symposium Series, 74, 228-244.

[72]Paola, A.Di., Marci, G., Palmisano, L., Schiavello, M., Uosaki, K., Ikeda, S., Ohtani, B. (2002). J. Phys. Chem. B. 106: 637.

[73]Qian, J. and Lu, K. (2009). 〃Multiwall Carbon Nanotube and TiO2 Sol Assembly〃, J. Nano & Nano Technol. 9, 5816-5822.

[74]Ranck, J.M., Bowman, R.S., Weeber, J.L., Katz, L.E., Sullivan, E.J. (2005). 〃BTEX removal from produced water using surfactant-modified zeolite〃, J. Environ. Eng. 131, 434–442.

[75]Rozkov, A., Vassiljeva, I., Kurvet, M., Kahru, A., Preis, S., Kharchenko, A., Krichevskaya, M., Liiv, M., Ae rd, A., Vilu, R., (1999). 〃Laboratory study of bioremediation of rocket fuel-polluted groundwater〃. Water Res. 33, 1303–1313.

[76]Sa’nchez, M., Rinco’n, M.E., Guirado-Lopez, R.A. (2007). 〃Anomalous Sensor Response of TiO2 Films: Electrochemical Impedance Spectroscopy and ab Initio Studies〃, J. Phys. Chem. C 113, 21635-21641.

[77]Serp, P., Corrias, M., Kalck, P. (2003). 〃Carbon nanotubes and nanofibers in catalysis〃, Appl. Catal. A 253, 337–358.

[78]Sclafain, A., Palmisano, L. and Davi, E. (1991). 〃Photocatalytic degrada-
tion of phenol in aqueous polycrystalline TiO2 dispersions: the influence of Fe3+, Fe2+ and Ag+ on the reaction rate〃, J. Photochemi. Photobiol. A: Chemi. 56, 113-123.

[79]Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscow, L., Pierotti, R.A., Rouquerol, J., Siemieniewska, T. (1985). 〃Reporting physisorption data for gas-solid systems wth special reference to the determination of surface area and porosity〃, Pure & Appl. Chem. 57, 603-619.

[80]Stumm, W. (1992). 〃Chemistry of the solid-water interface: Processes at the mineral-water and particle-water interface in natural systems〃, New York.

[81]Sun, J., Gao, L., Iwasa, M. (2004). 〃Noncovalent attachment of oxide nanoparticles onto carbon nanotubes using water-in-oil microemulsions〃, Chem. Commun. 7, 832-833.

[82]Su, F., Lu, C., Hu, S. (2010). 〃Adsorption of benzene, toluene, ethylbenzene and p-xylene by NaOCl-oxidized carbon nanotubes〃, Colloid & Surfaces. A. Physi. Eng. Aspects 353, 83-91.

[83]Tayade, R.J., Kulkarni, R.G. and Jasra, R.V. (2006). 〃Photocatalytic Degradation of Aqueous Nitrobenzene byNanocrystalline TiO2〃, Ind. Eng. Chem. Res. 45, 922-927.

[84]Tiburtius, E.R., Peralta-Zamora, P., Emmel, A. (2005). 〃Treatment of gasoline-contaminated waters by advanced oxidation processes〃, J. Hazard. Mater. 126, 86–90.

[85]Turchi, C.S. and Ollis, D.F. (1989). 〃Mixed Reactant Photocatalysis: Intermediates and Mutual Rate Inhibition〃, J.Catal. 119, 483-496.

[86]Turner, J.C.R. (1981). 〃An introduction to the theory of catalytic reactors 〃, Catal. Sci. and Technol. 1, 43-86.

[87]Vidali, M. (2001). 〃Bioremediation. An overview〃, Pure Appl. Chem. 73, 1163–1172.

[88]Wang, H., Wang, H.L., Jiang, W.F., Li, Z.Q. (2009). 〃Photocatalytic degradation of 2,4-dinitrophenol (DNP) by multi-walled carbon nanotubes (MWCNTs)/TiO2 composite in aqueous solution under solar irradiation〃, Water Res. 43, 204-210.

[89]Wallace, S., Kadlec, R. (2005). 〃BTEX degradation in a cold-climate wetland system〃, Water Sci. & Technol. 51, 165-171.

[90]Wang, Y. and Hong, C.S. (2000). 〃TiO2-mediated photomineralization of 2-chlorobiphenyl: the role of O2〃, Water Res. 34, 2791-2797.

[91]Wang, K.H., Hsieh, Y.H., Chou, M.Y., Chang, C.-Y. (1999). 〃Photocatal-
ytic degradation of 2-chloro and 2-nitrophenol by titanium dioxide suspensions in aqueous solution〃, Appl. Catal. B 21, 1-8.

[92]Wang, W., Serp, P., Kalck, P., Faria, J.L. (2005). 〃Photocatalytic degradation of phenol on MWNT and titania composite catalysts prepared by a modified sol–gel method〃, Appl. Catal. B: Environ. 56, 305-312.

[93]Wang, W., Serp, P., Kalck, P., Silva, C.G., Faria, J.L. (2008), 〃Preparation and Characterization of Nanostructured MWCNT-TiO2 Composite Materials for Photocatalytic Water Treatment Applications〃, Mater. Res. Bull., 43, 958-967.

[94]Wang, L.Z.,White, P.J. (1994). 〃Structure and properties of amylose, amylopectin, and intermediate materials of oat starches〃, 71, 263-268.

[95]Wong, C.C. and Chu, W. (2003). 〃The Hydrogen Peroxide-Assisted Photocatalytic Degradation of Alachlor in TiO2 suspensions〃, J. Environ. Sci. Techol. 37, 2310-2316.

[96]Wong, K.H., Tao, S., Dawson, R., Wong, P.K. (2004). 〃Optimization of photocatalytic oxidation of 2,2’,3,3’-tetrachlorobiphenyl〃, J. Hazard. Mater. B. 109, 149-155.

[97]Xia, X.H., Jia, Z.J., Yu, Y., Liang, Y., Wang, Z., Ma, L.L. (2007). 〃Preparation of multi-walled carbon nanotube supported TiO2 and its photocatalytic activity in the reduction of CO2 with H2O〃, Carbon 45, 717-721.

[98]Yang, X., Beckmann, D., Fiorenza, S., Niedermeier, C. (2005). 〃Field study of pulsed air sparging for remediation of petroleum hydrocarbon contaminated soil and groundwater〃, Environ. Sci. Technol. 39, 7279–7286.

[99]Yu, Y., Yu, J.C., Chan, C.Y., Che, Y.K., Zhao, J.C., Ding, L., Ge, W.K., Wong, P.K. (2005). 〃Enhancement of adsorption and photocatalytic activity of TiO2 by using carbon nanotubes for the treatment of azo dye〃, Appl. Catal. B: Environ. 61, 1-11.

[100]Yoo, K.S., Lee, T.G., Kim, J. (2005). 〃Preparation and characterization of mesoporous TiO2 particles by modified sol-gel method using ionic liquids〃, Microporous and Mesoporous Materials, 84, 211-217.

[101]Yu, H., Quan, X., Chen, S., Zhao, H. (2007). 〃TiO2-Multiwalled Carbon Nanotube Heterojunction Arrays and Their Charge Separation Capability〃, J. Phys. Chem. C 111, 12987-12991.

[102]Yu, Y., Yu, J.C., Yu, J.G., Kwok, Y.C., Che, Y.K., Zhao, J.C., Ding, L., Ge, W.K., Wong, P.K. (2005). 〃Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes〃, Appl. Catal. A, 289, 186-196.

[103]Yen, C.Y., Lin Y.F., Hung, C.H., Tseng, Y.H., M, C.C., Chang, M.C. (2008). 〃The effects of synthesis procedures on the morphology and photocatalytic activity of multi-walled carbon nanotubes/TiO2 nanocomposites〃, Nano techno. 19: 045604.

[104]Zafiriou, O.C., Dubien, J.J., Zepp, R.G. and Zika, R.G. (1984). 〃Photochemistry of Natural Waters〃, Environ. Sci. & Technol. 18, 358A-371A.

[105]Zepp, R.G. (1988). 〃Factors Affecting the Photochemical Treatment of Hazardous Waste〃, Environ. Sci. & Technol 22, 256-257.

[106]Zhu ,Z.Z., Wang, Z., Li, H.L. (2008). "Functional multi-walled carbon nanotube/polyaniline composite films as supports of platinum for formic acid electrooxidation", Appl. Surf. Sci. 254, 2934-2940.

[107]Zielke, U., Huttinger, K.J., Hoffman, W.P. (1996). "Surface-oxidized carbon fibers: I. Surface structure and chemistry", Carbon 34, 983–998.

[108]盧明俊、阮國棟、陳重男,「二氧化鈦薄膜催化光分解二氯松之研究」,第十六屆廢水處理技術研討會論文集 (1991)。

[109]林榮良,TiO2 光催化原理和應用例子,CHEMISTRY (THE CHINESE CHEM. SOC., TAIPEI), Vol. 60, No. 3, pp. 457-461 (2002).

[110]劉謹銓,「製備與改質環管狀二氧化鈦光觸媒及雙氯酚異相光催化降解之研究」,博士論文,中興大學,2008。

[111]盧伯麟,「二氧化鈦光觸媒薄膜備製及改質與環境污染物去除研究」,碩士論文,逢甲大學,2005。

[112]呂宗昕、吳偉宏 「奈米科技與二氧化鈦光觸媒科學發展,2004年4月,376期。

[113]許瓊旭,「以 CVD 法製備二氧化鈦光觸媒去除水溶液中 2,4-二氯酚之研究」,碩士論文,國立中興大學環境工程研究所,2006。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top