跳到主要內容

臺灣博碩士論文加值系統

(3.229.137.68) 您好!臺灣時間:2021/07/25 17:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:羅怡婷
研究生(外文):Yi-Ting Luo
論文名稱:LuxR[T] 與 cAMP-CRP 調控 Photobacterium leiognathi lux operon 轉錄表現之探討
論文名稱(外文):Regulatory roles of LuxR[T] and cAMP-CRP on the lux operon of Photobacterium leiognathi
指導教授:林瑞文林瑞文引用關係
指導教授(外文):Juey-Wen Lin
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生物化學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:88
中文關鍵詞:海生螢光菌
外文關鍵詞:Photobacterium leiognathiLuxR[T]
相關次數:
  • 被引用被引用:0
  • 點閱點閱:84
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Photobacterium leiognathi ATCC 25521 lux operon 之調節區域含有四個對稱序列 &;#8721;IV、&;#8721;III、&;#8721;II、&;#8721;I,一組 cAMP-CRP 結合位,以及兩組啟動子 P[DII]、P[DI]。其相關位置排列為:-&;#8721;IV-&;#8721;III-&;#8721;II-&;#8721;I-&;#8721;cAMP-CRP-P[DII]-P[DI]-SD-lux operon。利用 5’RACE 分析得知 lux operon 的轉錄起始點座落在 start codon 上游 -68 nt 的“C”核&;#33527;酸位置。利用胞內互補性螢光分析方式進行 glucose repression 試驗,證實此調控區含有 cAMP-CRP 之結合位,此位置座落在轉錄起始點上游 -71 nt 之位置,屬於 Class I cAMP-CRP dependent promoter。並於 E. coli中分析一系列 lux operon 調節區域中對稱序列刪除之重組質體,得知 &;#8721;II 為一負向調控區,&;#8721;I 為一正向調控區。將 &;#8721;I 與前之研究篩選獲得的可強化螢光表現之 LuxR[T] 進行一系列胞內反應,推測 LuxR[T] 會結合 &;#8721;I,因而提升螢光之表現。凝膠遲滯分析結果亦顯示 (His)6-LuxR[T] 蛋白可與 &;#8721;I 結合。因此,確認 LuxR[T] 可正調節 lux operon 螢光表現。此外,將包含 lux operon 調節區域質體的對稱序列 &;#8721;II 進行部分鹼基突變,再以螢光分析該質體於 E. coli 之螢光表現,證實 &;#8721;II 的確存在負調控機制,可能與未知蛋白結合,影響螢光表現。進一步以 EZ-Tn5TM &;lt;R6Kγori/KAN-2> TransposomeTM Kit 建構一含有任意基因被突變之 E. coil JM103y 族群,再送入含有 lux operon 調節區域之 plasmid,篩選螢光表現增強之轉殖株。目前,尚未篩選到能負調節 lux operon 表現之基因。最後,將可增強 lux operon 螢光之 luxR[T] 及 crp 基因,一起轉形至含有 lux operon 調節區域質體之 E. coil 中,分析螢光值。結果發現,同時存在 LuxR[T] 及 CRP 時,螢光表現提升,但提升程度與 CRP 單獨存在時之結果相似。因此,推測此二蛋白間存在排它效應 (exclusive effect)。本研究得知,lux operon 確實受到 cAMP-CRP 及 LuxR[T] 的正向調節作用,其作用機制仍待進一步研究分析。

The regulatory region R&R of the lux operon from Photobacterium leiognathi ATCC 25521 was cloned and identified. The R&R includes four symmetrical sequence, a CRP binding site, and two putative promoters, arranging in the order of ∑IV-∑III-∑II-∑I-∑cAMP-CRP-P[DII]-P[DI]-SD-lux operon. The functional roles of these sequence in R&R are not clean. In this study, the 5’ RACE assay results confirmed that the transcriptional initiation site of lux operon is the C nucleotide -68 nt upstream of the start codon, suggesting that the P[DII]-promoter is the one used for gene expression under this experimental condition. Glucose repression assays indicated that cAMP-CRP is involved in the regulation of lux operon. Belonging to Class I cAMP-CRP dependent promoter, the cAMP-CRP binding site is localized -71 nt upstream of the transcriptional start site. Serial deletion assays elicit that ∑II is a critical negative element and ∑I is a critical positive element in the R&R region. Previous studies have shown that LuxR[T] could enhance bioluminescence of P. leiognathi ATCC 25521 lux operon cloned in E. coli. In trans complementation Lux-bioassays showed that ∑I is closely related to LuxR[T]. Additionally, EMSA results revealed that LuxR[T] protein is able to bind ∑I of the lux operon R&R. On the other hand, the negative regulation effect of ∑II was demonstrated by base mutation. Furthermore, the EZ-Tn5TM<R6Kγori/KAN-2> TransposomeTM Kit was used to construct a pool of E. coil JM103y random mutant strains, and then, the plasmid carring lux operon R&R was transformed into this mutant pool and screened for transformants with bioluminescence. However, no positive result was obtained. Our bioassay result showed that the lux operon was also enhanced by crp gene. However, no additive effect was observed when luxR[T] gene coupled with the crp gene were cloned for enhancement of lux operon expression. These results clearly demonstrate that P. leiognathi lux operon is regulated by cAMP-CRP and LuxR[T], the response regulation of a two component system.


摘要 i
Abstract ii
目錄 iii
圖表目錄 v
附錄 vi
前言 1
材料與方法 8
I. 菌種與質體 8
II. 試藥、試劑與緩衝液 8
III. 實驗方法 11
一、質體選殖 (cloning) 11
二、生長曲線與螢光表現之測定 14
三、蛋白純化 14
四、SDS-PAGE 蛋白質膠體電泳 15
五、西方墨點法分析 16
六、EMSA 17
七、序列之電腦比對 18
八、5’RACE 定轉錄起始點之方法 18
九、以 EZ-Tn5 建構一含有任意基因被突變之 E. coil 族群 20
結果與討論 22
一、P. leiognathi lux operon 調節區域序列分析 22
(一) P. leiognathi ATCC 25521 lux operon 轉錄起始點分析 22
(二) lux operon R&R ∑cAMP-CRP 序列及功能分析 22
(三) R&R 中刪除 -∑IV-∑III-∑II-∑I- 的系列質體之功能分析 23
二、可增強 P. leiognathi lux operon 螢光表現之 LuxR[T] 分析 24
三、LuxR[T] 與 lux operon R&R ∑I 之關係 26
(一) 質體 pCH23 對於 lux operon R&R ∑I 之調控功能分析 26
(二) 質體 pCH74-B1 對於 lux operon R&R ∑I 之調控功能分析 26
(三) luxR[T] 表現量對於 lux operon R&R ∑I 之調控功能分析 28
(四) LuxR[T] 之表現與純化 28
(五) LuxR[T] 蛋白與 lux operon 調控區 ∑I 序列結合之分析 29
四、lux operon R&R ∑II 負向調節功能分析 30
(一) lux operon R&R ∑II 負向調控之功能性分析 31
(二) lux operon R&R 對稱序列 ∑II之定點突變置換及分析 31
(三) 可負調節 lux operon 表現基因之篩選 32
五、Plac 與 Plux調控區之序列比較與分析 33
六、cAMP-CRP 與 LuxR[T] 對於lux operon 之調控關係 33
(一) P. leiognathi 之 CRP 對 lux operon 之調控功能分析 33
(二) CRP 與 LuxR[T] 對 lux operon 之調控功能分析 35
七、P. leiognathi不同品系間 R&R[lux] 之比較 35
總結 37
參考文獻 40
附錄 71
表一:本實驗所使用之菌種及其特性 47
表二:本實驗所使用之質體及其特性 48
表三:本實驗所使用之 Primers 及其序列 51
Fig. 1:P. leiognathi lux operon R&R 區域及系列刪減質體的相對應區域之示意圖 52
Fig. 2:P. leiognathi lux operon R&R之轉錄起始點的訂定 53
Fig. 3:P. leiognathi lux operon R&R ∑cAMP-CRP 之功能分析 54
Fig. 4:包含 lux operon R&R 對稱序列刪除系列 -∑IV-∑III-∑II-∑I- 質體的 E. coli 轉殖株之螢光與生長曲線圖 55
Fig. 5:lux operon R&R正向調控序列 ∑I 之功能分析 56
Fig. 6:LuxR[T] 與其他物種之胺基酸序列比對 57
Fig. 7:LuxR[T] 的 functional domains 及 conserved 胺基酸序列 58
Fig. 8:質體 pCH23 對 lux operon 之調節功能分析 59
Fig. 9:luxR[T] 基因對 lux operon 之調節功能分析 60
Fig. 10:不同啟動子帶動 luxR[T] 表現對於 lux operon 之調節功能分析 61
Fig. 11:LuxR[T]-(His)6 蛋白之純化 62
Fig. 12:LuxR[T]-(His)6 蛋白與 lux operon 調控區 DNA 片段之 EMSA 63
Fig. 13:LuxR[T]-Pi 蛋白與 lux operon 調控區 DNA 之 EMSA 64
Fig. 14:包含質體 pYFL1 及 pUH93-B 的 E. coli 之螢光與生長曲線圖 65
Fig. 15:包含質體 pYFL1 及 pYT2 的 E. coli 之螢光與生長曲線圖 66
Fig. 16:lux operon調控區 ∑II 序列突變置換效應 67
Fig. 17:Plac 與 Plux 調控區之序列比較與分析 68
Fig. 18:crp 基因對 lux operon 之調節功能分析 69
Fig. 19:luxR[T] 及 crp 基因對 lux operon 之調節功能分析 70
附錄一:螢光菌發光之生化反應機制 71
附錄二:P. leiognathi ATCC 25521 lux operon 之調節區域及本實驗所使用之 primer 相對位置 72
附錄三:P. leiognathi PL741 lux operon 之調節區域及對稱性區域之序列 73
附錄四:luxR[T] 基因及其鄰近基因組成 74
附錄五:P. leiognathi ATCC 25521 的 luxR[T] 基因及鄰近序列 75
附錄六:載體 pYFL01/ pYFL02 及 pYFL1 map 圖 80
附錄七:pYT1 質體之構築 81
附錄八:pYT2 質體之構築 82
附錄九:質體 pYFL01-T4 (pJH93N) 之構築 83
附錄十:質體 pYF28-MI-N 及 pYF28-MII-N 之構築 84
附錄十一:質體 pCH74-B1 及 pYT5之構築 85
附錄十二:P. leiognathi ATCC 25521 的 crp 基因及鄰近序列 86
附錄十三:5’RACE 定序結果圖 88









AbouKhair, N.K., Ziegler, M.M., and Baldwin, T.O. (1985). Bacterial luciferase: demonstration of a catalytically competent altered conformational state following a single turnover. Biochemistry 24, 3942-3947.
Ast, J.C., and Dunlap, P.V. (2004). Phylogenetic analysis of the lux operon distinguishes two evolutionarily distinct clades of Photobacterium leiognathi. Arch Microbiol 181, 352-361.
Baldwin, T.O., Ziegler, M.M., and Powers, D.A. (1979). Covalent structure of subunits of bacterial luciferase: NH2-terminal sequence demonstrates subunit homology. Proc Natl Acad Sci U S A 76, 4887-4889.
Baldwin, T.O., Devine, J.H., Heckel, R.C., Lin, J.W., and Shadel, G.S. (1989). The complete nucleotide sequence of the lux regulon of Vibrio fischeri and the luxABN region of Photobacterium leiognathi and the mechanism of control of
bacterial bioluminescence. J Biolumin Chemilumin 4, 326-341.
Bassler, B.L. (1999). How bacteria talk to each other: regulation of gene expression by quorum sensing. Curr Opin Microbiol 2, 582-587.
Bassler, B.L., Wright, M., Showalter, R.E., and Silverman, M.R. (1993). Intercellular signalling in Vibrio harveyi: sequence and function of genes regulating expression of luminescence. Mol Microbiol 9, 773-786.
Bassler, B.L., Wright, M., and Silverman, M.R. (1994a). Multiple signalling systems controlling expression of luminescence in Vibrio harveyi: sequence and function of genes encoding a second sensory pathway. Mol Microbiol 13, 273-286.
Bassler, B.L., Wright, M., and Silverman, M.R. (1994b). Sequence and function of LuxO, a negative regulator of luminescence in Vibrio harveyi. Mol Microbiol 12, 403-412.
Birck, C., Mourey, L., Gouet, P., Fabry, B., Schumacher, J., Rousseau, P., Kahn, D., and Samama, J.P. (1999). Conformational changes induced by phosphorylation of the FixJ receiver domain. Structure 7, 1505-1515.
Boisvert, H., Chatelain, R., and Bassot, J.M. (1967). Study on a Photobacterium isolated from the light organ of the Leiognathidae fish. Ann Inst Pasteur (Paris) 112, 521-525.
Boylan, M., Graham, A.F., and Meighen, E.A. (1985). Functional identification of the fatty acid reductase components encoded in the luminescence operon of Vibrio fischeri. J Bacteriol 163, 1186-1190.
Busby, S., and Ebright, R.H. (1999). Transcription activation by catabolite activator protein (CAP). J Mol Biol 293, 199-213.
Chang, A.C., and Cohen, S.N. (1978). Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J Bacteriol 134, 1141-1156.
Chen, Y.-F. (2004). Functional analysis of the regulatory luxZ gene from Photobacterium leiognathi. MS Thesis. Geaduate Institute of Biochemistry, National Chung Hsing University.
de Bruijn, I., and Raaijmakers, J.M. (2009). Diversity and functional analysis of LuxR-type transcriptional regulators of cyclic lipopeptide biosynthesis in Pseudomonas fluorescens. Appl Environ Microbiol 75, 4753-4761.
Engebrecht, J., Nealson, K., and Silverman, M. (1983). Bacterial bioluminescence:isolation and genetic analysis of functions from Vibrio fischeri. Cell 32, 773-781.
Engebrecht, J., and Silverman, M. (1984). Identification of genes and gene products necessary for bacterial bioluminescence. Proc Natl Acad Sci U S A 81, 4154-4158.
Farmer, J.J., 3rd, Jorgensen, J.H., Grimont, P.A., Akhurst, R.J., Poinar, G.O., Jr., Ageron, E., Pierce, G.V., Smith, J.A., Carter, G.P., Wilson, K.L., et al. (1989). Xenorhabdus luminescens (DNA hybridization group 5) from human clinical
specimens. J Clin Microbiol 27, 1594-1600.
Francisco, W.A., Abu-Soud, H.M., DelMonte, A.J., Singleton, D.A., Baldwin, T.O., and Raushel, F.M. (1998). Deuterium kinetic isotope effects and the mechanism of the bacterial luciferase reaction. Biochemistry 37, 2596-2606.
Freeman, J.A., and Bassler, B.L. (1999a). Sequence and function of LuxU: a two-component phosphorelay protein that regulates quorum sensing in Vibrio harveyi. J Bacteriol 181, 899-906.
Freeman, J.A., and Bassler, B.L. (1999b). A genetic analysis of the function of LuxO, a two-component response regulator involved in quorum sensing in Vibrio harveyi. Mol Microbiol 31, 665-677.
Freeman, J.A., Lilley, B.N., and Bassler, B.L. (2000). A genetic analysis of the functions of LuxN: a two-component hybrid sensor kinase that regulates quorum sensing in Vibrio harveyi. Mol Microbiol 35, 139-149.
Fuqua, W.C., Winans, S.C., and Greenberg, E.P. (1994). Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176, 269-275.
Fuqua, C., Winans, S.C., and Greenberg, E.P. (1996). Census and consensus in bacterial ecosystems: the LuxR-LuxI family of quorum-sensing transcriptional regulators. Annu Rev Microbiol 50, 727-751.
Gao, R., Mack, T.R., and Stock, A.M. (2007). Bacterial response regulators: versatile regulatory strategies from common domains. Trends Biochem Sci 32, 225-234.
Gao, R., and Stock, A.M. (2009). Biological insights from structures of two-component proteins. Annu Rev Microbiol 63, 133-154.
Golderer, G., Dlaska, M., Grobner, P., and Piendl, W. (1995). TTG serves as an initiation codon for the ribosomal protein MvaS7 from the archaeon Methanococcus vannielii. J Bacteriol 177, 5994-5996.
Gray, K.M. (1997). Intercellular communication and group behavior in bacteria. Trends Microbiol 5, 184-188.
Gunsalus-Miguel, A., Meighen, E.A., Nicoli, M.Z., Nealson, K.H., and Hastings, J.W. (1972). Purification and properties of bacterial luciferases. J Biol Chem 247, 398-404.
Hanahan, D. (1983). Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166, 557-580.
Hastings, J.W., and Presswood, R.P. (1978). Bacterial luciferase: FMNH2-aldehyde oxidase. Methods Enzymol 53, 558-570.
Hastings, J.W., Potrikus, C.J., Gupta, S.C., Kurfurst, M., and Makemson, J.C. (1985). Biochemistry and physiology of bioluminescent bacteria. Adv Microb Physiol 26, 235-291.
Hastings, J. W. (1986). Bioluminescence in bacteria and dinoflagellates. In: Light emission in plants and bacteria (Eds. Govindiee, A. J., and Fork, D. C.), pp. 363-398.
Acdemic Press, Inc., New York.
Haygood, M.G. (1990). Relationship of the luminous bacterial symbiont of the Caribbean flashlight fish, Kryptophanaron alfredi (family Anomalopidae) to other luminous bacteria based on bacterial luciferase (luxA) genes. Arch Microbiol 154, 496-503.
Heeb, S., and Haas, D. (2001). Regulatory roles of the GacS/GacA two-component system in plant-associated and other gram-negative bacteria. Mol Plant Microbe Interact 14, 1351-1363.
Huang C.-H. (2002). Cloning and functional analysis of the specific genes that enhance bioluminescence of the lux operon from photobacterium leiognathi. MS Thesis. Geaduate Institute of Biochemistry, National Chung Hsing University.
Huisman, G.W., and Kolter, R. (1994). Sensing starvation: a homoserine lactone-dependent signaling pathway in Escherichia coli. Science 265, 537-539.
Hsu, C.-M. (2006). Functional analysis of the regulatory protein LuxZ-R&R/DNA binding from Photobacterium leiognathi. MS Thesis. Geaduate Institute of Biochemistry, National Chung Hsing University.
Kaeding, A.J., Ast, J.C., Pearce, M.M., Urbanczyk, H., Kimura, S., Endo, H., Nakamura, M., and Dunlap, P.V. (2007). Phylogenetic diversity and cosymbiosis in the bioluminescent symbioses of "Photobacterium mandapamensis". Appl Environ
Microbiol 73, 3173-3182.
Kawakami, T., Kaneko, A., Okada, N., Imajoh-Ohmi, S., Nonaka, T., Matsui, H., Kawahara, K., and Danbara, H. (1999). TTG as the initiation codon of Salmonella slyA, a gene required for survival within macrophages. Microbiol Immunol 43, 351-357.
Kita, A., Kasai, S., and Miki, K. (1995). Crystal structure determination of a flavoprotein FP390 from a luminescent bacterium, Photobacterium phosphoreum. J Biochem 117, 575-578.
Kofoid, E.C., and Parkinson, J.S. (1988). Transmitter and receiver modules in bacterial signaling proteins. Proc Natl Acad Sci U S A 85, 4981-4985.
Lee, J., O''Kane, D.J., and Visser, A.J. (1985). Spectral properties and function of two lumazine proteins from Photobacterium. Biochemistry 24, 1476-1483.
Lin, J.W., Chao, Y.F., and Weng, S.F. (1993). The lumazine protein-encoding gene in Photobacterium leiognathi is linked to the lux operon. Gene 126, 153-154.
Lin, J.W., Chao, Y.F., and Weng, S.F. (1995a). Nucleotide sequence and functional analysis of regulatory region of the lumP and the lux operon from Photobacterium leiognathi. Biochem Biophys Res Commun 210, 938-947.
Lin, J.W., Yu, K.Y., Chao, Y.F., and Weng, S.F. (1995b). The lumQ gene is linked to the lumP gene and the lux operon in Photobacterium leiognathi. Biochem Biophys Res Commun 217, 684-695.
Lin, J.W., Yu, K.Y., Chen, H.Y., and Weng, S.F. (1996a). Regulatory region with putA gene of proline dehydrogenase that links to the lum and the lux operons in Photobacterium leiognathi. Biochem Biophys Res Commun 219, 868-875.
Lin, J.W., Chao, Y.F., and Weng, S.F. (1996b). Nucleotide sequence and functional analysis of the luxE gene encoding acyl-protein synthetase of the lux operon from Photobacterium leiognathi. Biochem Biophys Res Commun 228, 764-773.
Lin, J.W., Lu, H.C., Chen, H.Y., and Weng, S.F. (1997). The pkI gene encoding pyruvate kinase I links to the luxZ gene which enhances bioluminescence of the lux operon from Photobacterium leiognathi. Biochem Biophys Res Commun 239,
228-234.
Lin, J.W., Chao, Y.F., and Weng, S.F. (1998). Characteristic analysis of the luxG gene encoding the probable flavin reductase that resides in the lux operon of Photobacterium leiognathi. Biochem Biophys Res Commun 246, 446-452.
Lin, J.W., Chao, Y.F., and Weng, S.F. (2001). Riboflavin synthesis genes ribE, ribB, ribH, ribA reside in the lux operon of Photobacterium leiognathi. Biochem Biophys
Res Commun 284, 587-595.
Lu, H.-C. (1996) Identification and functional analysis of the luxZ gene that enhances bioluminescence of the lux operon from Photobacterium leiognathi. MS Thesis. Graduate Institute of Agricultural Biotechnology, National Chung Hsing University.
Meighen, E.A., and MacKenzie, R.E. (1973). Flavine specificity of enzyme-substrate intermediates in the bacterial bioluminescent reaction. Structural requirements of the flavine side chain. Biochemistry 12, 1482-1491.
Meighen, E.A. (1991). Molecular biology of bacterial bioluminescence. Microbiol Rev 55, 123-142.
Mok, K.C., Wingreen, N.S., and Bassler, B.L. (2003). Vibrio harveyi quorum sensing: a coincidence detector for two autoinducers controls gene expression. EMBO J 22, 870-881.
Moore, S.A., James, M.N., O''Kane, D.J., and Lee, J. (1993). Crystal structure of a flavoprotein related to the subunits of bacterial luciferase. EMBO J 12, 1767-1774.
Moore, S.A., and James, M.N. (1995). Structural refinement of the non-fluorescent flavoprotein from Photobacterium leiognathi at 1.60 A resolution. J Mol Biol 249, 195-214.
Nealson, K.H., and Hastings, J.W. (1979). Bacterial bioluminescence: its control and ecological significance. Microbiol Rev 43, 496-518.
Parkinson, J.S., and Kofoid, E.C. (1992). Communication modules in bacterial signaling proteins. Annu Rev Genet 26, 71-112.
Petushkov, V. N., Ketelaars, M., Gibson, B. G., and Lee, J. (1996) Interaction of Photobacterium leiognathi and Vibrio fischeri Y1 luciferases with fluorescent (antenna) proteins: bioluminescence effects of the aliphatic additive. Biochemistry 35, 12086-12093
Riendeau, D., and Meighen, E. (1979). Evidence for a fatty acid reductase catalyzing the synthesis of aldehydes for the bacterial bioluminescent reaction. Resolution from luciferase and dependence on fatty acids. J Biol Chem 254,
7488-7490.
Riendeau, D., Rodriguez, A., and Meighen, E. (1982). Resolution of the fatty acid reductase from Photobacterium phosphoreum into acyl protein synthetase and acyl-CoA reductase activities. Evidence for an enzyme complex. J Biol Chem 257, 6908-6915.
Rodriguez, A., Riendeau, D., and Meighen, E. (1983). Purification of the acyl coenzyme A reductase component from a complex responsible for the reduction of fatty acids in bioluminescent bacteria. Properties and acyltransferase activity. J Biol Chem 258, 5233-5237.
Showalter, R.E., Martin, M.O., and Silverman, M.R. (1990). Cloning and nucleotide sequence of luxR, a regulatory gene controlling bioluminescence in Vibrio harveyi. J Bacteriol 172, 2946-2954.
Shyu, J.-H. (1998). Identification and characterization of the specific gene that enhances bioluminescence of the lux operon from Photobacterium leiognthi. MS Thesis. Institute of Agricultural Biotechnology, National Chung Hsing University.
Stock, J.B., Stock, A.M., and Mottonen, J.M. (1990). Signal transduction in bacteria. Nature 344, 395-400.
Studier, F.W., Rosenberg, A.H., Dunn, J.J., and Dubendorff, J.W. (1990). Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol 185, 60-89.
Swartzman, A., Kapoor, S., Graham, A.F., and Meighen, E.A. (1990). A new Vibrio fischeri lux gene precedes a bidirectional termination site for the lux operon. J Bacteriol 172, 6797-6802.
Swift, S., Stewart, G.S., and Williams, P. (1996). The inner workings of a quorum sensing signal generator. Trends Microbiol 4, 463-465; discussion 465-466.
Szittner, R., and Meighen, E. (1990). Nucleotide sequence, expression, and properties of luciferase coded by lux genes from a terrestrial bacterium. J Biol Chem 265, 16581-16587.
Szallas, E., Koch, C., Fodor, A., Burghardt, J., Buss, O., Szentirmai, A., Nealson, K.H., and Stackebrandt, E. (1997). Phylogenetic evidence for the taxonomic heterogeneity of Photorhabdus luminescens. Int J Syst Bacteriol 47, 402-407.
Tu,M.-L. (1993) Functional analysis of the regulatory region of the lux regulon from Vibrio fischeri. MS Thesis. Institute of Molecular Biology, National Chung Hsing
University.
Ulitzur, S., and Hastings, J.W. (1979). Evidence for tetradecanal as the natural aldehyde in bacterial bioluminescence. Proc Natl Acad Sci U S A 76, 265-267.
Ushida, C., and Aiba, H. (1990). Helical phase dependent action of CRP: effect of the distance between the CRP site and the -35 region on promoter activity. Nucleic Acids Res 18, 6325-6330.
Wang P.-J. (2004). Functional analysis of the regulation and enhancement of the luxU-luxV genes from Photobacterium leiognathi. MS Thesis. Graduate Institute of Biochemistry, National Chung Hsing University.
Wassmann, P., Chan, C., Paul, R., Beck, A., Heerklotz, H., Jenal, U., and Schirmer, T. (2007). Structure of BeF3--modified response regulator PleD: implications for diguanylate cyclase activation, catalysis, and feedback inhibition. Structure 15, 915-927.
Yanisch-Perron, C., Vieira, J., and Messing, J. (1985). Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33, 103-119.
Zhao, X., Copeland, D.M., Soares, A.S., and West, A.H. (2008). Crystal structure of a complex between the phosphorelay protein YPD1 and the response regulator domain of SLN1 bound to a phosphoryl analog. J Mol Biol 375, 1141-1151.
Zheng, D., Constantinidou, C., Hobman, J.L., and Minchin, S.D. (2004). Identification of the CRP regulon using in vitro and in vivo transcriptional profiling. Nucleic Acids Res 32, 5874-5893.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top