[1]Haydak, M.H. ( 1970) Honey bee nutrition. Ann. Rev. Entomol. 15, 143-156
[2]Bilikova, K., Hanes, J., Nordhoff, E., Saenger, W., Klaudiny, J., Simuth, J. (2002) Apisimin, a new serine–valine-rich peptide from honeybee(Apis mellifera L) Royal Jelly: Purification and Molecular Characterization. FEBS Lett. 528, 125-129
[3]Blum, M. S., Novak, A. F., Taber, S. (1959) 10-Hydroxy-2Δ-decenoic acid, an antibiotic found in royal jelly. Science, 130, 452- 453
[4]Fujiwara, S., Imai, J., Fujiwara, M., Yaeshima, T., Kawashima, T. ., Kobayashi, K. (1990) A potent antibacteria protein in royal jelly:Purification and determination of the primary sturacture of royalisin. J, boil. chem. 265, 11333-11337
[5]Bilikova, K., Gusui, W., Simuth, J. (2001) Isolation of a peptide fraction from honeybee royal jelly as a potential antifoulbrood factor. Apidologie. 32, 275-283
[6]Bulet, P., Hetru, C., Dimarcq, J. L., Hoffmann, D. (1999) Antimicrobial peptides in insects; structure and function. Dev. Comp. Immunol. 23, 329-344
[7]Casteels, P., Ampe, C., Jacobs, F., Vaek, M., Tempst, P. (1989) Apidaecins: antibacterial peptides from honeybee. EMBO J. 8, 2387-2391
[8]Casteels, P., Ampe, C., Riviere, L., Damme, J.V., Elicone, C., Fleming, M., Jacobs, F., Tempst, P. (1990) Isolation and characterization of abaecin, a major antibacterial peptide in the honeybee (Apis mellifera). Eur. J. Biochem. 187, 381-386
[9]Casteels, P., Ampe, C., Jacobs, F., Tempst, P. (1993) Functional and chemical characterization of hymenoptaecin, an antibacterial polypeptide that is infection-inducible in the Apis mellifera. J. Biol. Chem. 268, 7744-7054
[10]Casteels-Jasson, K., Zhang, W., Capaci, T., Casteels, P., Tempst, P. (1994) Acute transcriptional response of the honeybee peptide-antibiotics gene repertorire and required post-translational conversion of the precursor structures. J. Biol. Chem. 269, 28569-28575
[11]Bachanova, K., Klaudiny, J., Kopernicky, J., Simuth, J. (2002) Identification of honeybee peptide active against Paenibacillus larvae larvae through bacterial growth-inhibition assay on polyacrylamide gel. Apidologie 33, 259-269
[12]Klaudiny, J., Albert, S., Bachanova, K., Kopernicky, J., Simuth, J. (2005) Two structurally different defensin genes, one of them encoding a novel defensin isoform, are expressed in honeybee Apis mellifera. Insect Biochemistry and Molecular Biology 35, 11-22
[13]Hanzawa, H., Shimada, I., Kuzuhara, T., Komano, H., Kohda, D., Inagaki, F., Natori,S., Arata, Y. (1990) 1H nuclear magnetic resonance study of the solution conformation of an antibacterial protein, sapecin. FEBS Lett. 269, 413–420
[14]Bonmatin, J.M., Bonnat, J.L., Gallet, X., Vovelle, F., Ptak, M., Reichart, J.M., Hoffmann, J. A., Keppi, E., Legrain, M., Achstetter, T. (1992) Two-dimensional 1H NMR study of recombinant insect defensin A in water: resonance assignments, secondary structure and global folding. J. Biomol. 2, 235–256
[15]Cornet, B., Bonmatin, J.M., Hetru, C., Hoffmann, J.A., Ptak, M., Vovelle, F.,(1995) Refined three-dimensional solution structure of insect defensin A. Structure 3, 435–448
[16]Cociancich, S., Ghazi, A., Hetru, C., Hoffmann, J.A., Letellier, L. (1993) Insect defensin, an inducible antibacterial peptide, forms voltage-dependent channels in Micrococcus luteus. J. Biol. Chem. 268, 19239-19245
[17]Tzen, J. T. C., Peng C.C., Cheng, D.J., Chen, E.C., Chiu J.M. (1997) A new method forseed oil body purification and examination of oil body integrity following germination. J. Biochem. 121, 762-768
[18]Tzen, J. T. C., Cao, Y. Z., Laurent, P., Ratnayake, C. and Huang, A. H.C. (1993) Lipids, proteins, and structure of seed oil bodies from diverse species. Plant Physiol. 101, 267-276
[19]Peng, C. C., Tzen, J. T. C. (1998) Analysis of the three essential constituents of oil bodies in developing sesame seeds. Plant Cell Physiology 39, 35-42
[20]Slack, C. R., Bertaud, W. S., Shaw, B. P., Holland, R., Browse, J. andWright, H. (1980) Some studies on the composition and surface properties of oil bodies from the seed cotyledons of safflower andlinseed. J Biol Chem. 190, 551-561
[21]Tzen, J. T. C., Líe GC., Huang AHC (1992) Characterization of the charged components and their topology on the surface of plant seed oil bodies. J Biol Chem. 267, 15626-15634
[22]Tzen, J. T. C., Chuang, R. L. C., Chen, J. C. F., Wu, L. S. H. (1998) Coexistence of both oleosin isoforms on the surface of seed oil bodies and their individual stabilization to the organelles. J. Biochem. 123, 319-324
[23]Qu, R., Wang, S. M., Lin, Y. H., Vance, V. B., Huang, A. H. C. (1986) Characteristics and biosynthesis of membrane proteins of lipid bodies in the scutella of maize (Zea mays L.). Biochem. J. 234, 57-65
[24]Murphy, D. J., Au, D. M. Y. (1989) A new class of highly abundant apolipoproteins involved in lipid storage in oilseeds. Biochem. Soc.Trans. 117, 682-683
[25]Tzen, J. T. C., Lai, Y. K., Chan, K. L., Huang, A. H. C. (1990) Oleosin isoforms of high and low molecular weights are present in the oil bodies of diverse seed species. Plant Physiol. 94, 1282-1289
[26]Murphy, D. J., Keen, J. N., O''Sullivan, J. N., Au, D. M. Y., Edwards, E.W., Jackson, P. J., Cummins, I., Gibbons, T., Shaw, C. H., Ryan, A. J. (1991) A class of amphipathic proteins associated with lipidstorage bodies plants. Possible similarities with animal serum apolipoproteins. Biochem. Biophys. Acta. 1088, 86-94
[27]Chuang, R. L. C., Chen, J. C. F., Chu, J., Tzen, J. T. C. (1996) Characterization of seed oil bodies and their surface oleosin isoforms from rice embryos. J. Biochem. 120, 74-81
[28]Wu, L. S. H., Wang, L. D., Chen, P. W., Chen, L. J., Tzen, J. T. C. (1998) Genomic cloning of 18kDa oleosin and detection of triacylglycerols and oleosin isoforms in maturing rice and postgerminative seedlings. J. Biochem. 123, 386-391
[29]Tai, S.S.K., Wu, L.S.H., Chen, E.C.F., Tzen, J. T. C. (1999) Molecular cloning of 11S globulin and 2S albumin, the two major seed storage proteins in sesame. Journal of Agricultural and Food Chemistry 47, 4932–4938
[30]Li, M., Smith, L. J., Clark, D. C., Wilson, R., Murphy, D. J. (1992). Secondary structures of a new class of lipid body proteins from oilseeds. J. Biol. Chem. 267, 8245-8253
[31]Huang, A. H. C. (1992). Oil bodies and oleosins in seeds. Annu. Rev. Plant Physiol. 43, 177-200
[32]Herman, E. M. (1995) Cell and molecular biology of seed oil development in Seed Development and Germination (Kigel, J. and Galili, G., eds.), pp.195-214. Marcel Dekker, New York
[33]Peng C. C., Viola S. Y. Lee., Meei-Yn Lin., Hsin-Yi Huang., Tzen, J. T. C. (2007) Minimizing the central hydrophobic domain in oleosin for the constitution of artificial oil bodies J. Agric. Food Chem. 55, 5604-5610
[34]Tzen, J. T. C., Huang, A.H. (1992) Surface structure and properties of plant seed oil bodies. J. Cell Biol. 117, 327-335
[35]Van Rooijen, G. J. H., Moloney, M. M. (1995) Plant seed oil-bodies as carriers for foreign proteins. Bio. Technology. 13, 72-77
[36]Peng, C. C., Lin, I. P., Lin, C. K., Tzen, J. T. C. (2003) Size and stability of reconstituted sesame oil bodies. Biotechnol. Prog. 19, 1623-1626
[37]Peng, C. C., Shyu, D. J., Chou, W. M., Chen, M. J., Tzen, J. T. C. (2004) Method for bacterial expression and purification of sesame cystatin via artificial oil bodies. J. Agri. Food Chem. 52, 3115-3119
[38]Chiang, C.J., Chen, H. C., Chao, Y. P., Tzen, J. T. C. (2005) Efficient system of artificial oil bodies for functional expression and purification of recombinant nattokinase in Escherichia coli. J. Agric. Food Chem. 53, 4799-4804
[39]Perler, F.B., Davis, E.O., Dean, G. E., Gimble, F.S., Jack, W. E., Neff, N., Noren, C. J., Thorner, J., Belfort, M. (1994) Protein splicing elements: inteins and exteins—a definition of terms and recommended nomenclature. Nucleic Acids Res. 22, 1125-1127
[40]Chong, S., Yang, S., Paulus, H., Benner, J., Perler, F. B., Xu, M. Q. (1996) Protein splicing involving the Saccharomyces cerevisiae VMA intein: the steps in the splicing pathway, side reactions leading to protein cleavage, and establishment of an in vitro splicing system. J. Biol. Chem. 271, 22159-22168
[41]Chiang, C. J., Chen, H. C., Kuo, H. F., Chao, Y. P., Tzen, J. T. C. (2006) One-step purification of insoluble hydantoinase overproduced in Escherichia coli. Enzy Microb Tech. 39, 1152-1158
[42]曾志正. 2001.芝麻種子在生物科技上的應用.科學發展月刊. 第29卷第9期[43]Tam, J. P., Spetzler, J. C. (1997) Multiple antigen peptide system. Methods enzymol. 289, 612-637
[44]Derman, A. I., Prinz, W. A., Belin, D., Beckwith, J.(1993) Mutation that allows disulfide bond formation in the cytoplasm of Escherichia coil., Science. 262, 1744–1747
[45]Sambrook, J., Russell, D. W. (2001) Molecular Cloning: A Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
[46]Innis, M. A., Gelfand, D. H., Sninsky, J. J., White, T. J. (1990) PCR protocols.San Diego: Academic Press.
[47]Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685
[48]Polson, A. (1990) Isolation of IgY from the yolks of eggs by a chloroform polyethylene glycol procedure. Immunological Investigations 19, 253-258
[49]Schagger, H. (2006) Tricine-SDS-PAGE. Nat Protoc. 1 ,16-22
[50]黃俊儒,(2008)以人造油體蛋白質純化表達系統純化蜂王漿抗菌蛋白質- royalisin。國立中興大學生物科技學研究所碩士論文。[51]Fassi Fehri, L., P. Sirand-Pugnet., G. Gourgues., G. Jan, H. Wróblewski., A. Blanchard. (2005) Resistance to antimicrobial peptides and stress response in Mycoplasma pulmonis. Antimicrob Agents Chemother 49, 4154-4165
[52]Béven, L., and H. Wróblewski. (1997). Effect of natural amphipathic peptides on 20 viability, membrane potential, cell shape and motility of mollicutes. Res Microbiol 148, 163-175
[53]Cole A, M., Weis, P., Diamond, G. (1997) Isolation and characterization of pleurocidin, an antimicrobial peptide in the skin secretions of winter flounder. J Biol Chem. 272, 12008-12013
[54]A. Speciale., R. Musumeci., G. Blandino., I. Milazzo., F. Caccamo., G. Nicoletti. (2002) Minimal inhibitory concentrations and time-kill determination of moxifloxacin against aerobic and anaerobic isolates. International Journal of antimicrobial agents 19, 111-118
[55]Jeff, C. F. Chen., Rong-Hwa Lin., Hsiou-Chen Huang., Tzen. J. T. C. (1997) Cloning, expression and isoform classification of a minor oleosin in sesame oil bodies. J. biochem, 122, 819-824
[56]Kadokura, H., Katzen, F., Beckwith, J. (2003) Protein disulfide bond formation in prokaryotes. Annu. Rev. Biochem. 72, 111-135
[57]Peng, C. C. (2006) Application of antimicrobial peptides in biotechnology. Plant pathol.Bull. 15, 69-75
[58]Fink, J., Boman, A., Boman, H.G., Merrifield,R.B. (1989) Design, synthesis and antibacterial activity of cecropin-like model peptides. Int J Pept Protein Res. 33, 412-421
[59]Tamaoki, H., Sakakibara, S. (1991) Solution conformation of endothelin determined by means of 1H-NMR spectroscopy and distance geometry calculations. Protein Eng. 4,509-518
[60]Bulet, P., Stocklin, R., Menin, L. (2004) Antimicrobial peptides: from invertebrates to vertebrates. Immunol Rev. 198, 169-184
[61]Dimarcq, JL., Bulet, P., Hetru C., Hoffmann, J. (1998) Cysteine-rich antimicrobial peptides in invertebrates. Biopolymers. 47, 465-477
[62]Engstrom, Y. (1999) Induction and regulation of antimicrobial peptides in Drosophila. Dev Comp Immunol. 23, 345-358
[63]Hoffmann, JA. (1995) Innate immunity of insects. Curr Opin Immunol. 7, 4-10
[64]Kimbrell, DA., Beutler, B. (2001) The evolution and genertics of innate immunity. Nat Rev Genet. 2, 256-267
[65]Otvos, Jr. L. (2000) Antibacterial peptides isolated from insects. J. Pept. Sci. 6, 497-511
[66]Salzet, M. (2001) Vertebrate innate immunity resembles a mosaic of invertebrate immune responses. Trends Immunol. 22, 285-288
[67]Cociancich, S., Ghazi, A., Hetru, C., Hoffmann, J. A., Letellier, L. (1993) Insect defensin, an antibacterial peptide, forms voltage-dependant channels in Micrococcus Luteus. J. Biol. Chem. 268, 19239-19245
[68]Okada, M., Natori, S. (1985) Ionophore activity of sarcotoxin I, a bactericidal protein of Sarcophaga peregrina. Biochem. J. 229, 453-458
[69]Christensen, B., Fink, J., Merrifield, R. B., Mauzerall, D. (1988) Channel-forming properties of cecropins and related model compounds incorporated into planar lipid membranes. Proc. Natl. Acad. Sci. U.S.A. 85, 5072-5076
[70]Lockey, T. D., Ourth, D. D. (1996) Formation of pores in Escherichia coli cell membranes by a cecropin isolated from hemolymph of Heliothis virescens larvae. Eur. J. Biochem. 236, 263-271
[71]Mackler, B. F., Kreil, G. (1977) Honey bee venom melittin: correlation of nonspecific inflammatory activities with amino acid sequences. Inflammation. 2, 55~65
[72]Mangoni, M. E., Aumelas, A., Charnet, P., Roumestand, C., Chiche, L., Despaux, E., Grassy, G., Calas, B., Chavanieu, A. (1996) Change in membrane permeability induced by protegrin 1: implication of disulfide bridges for pore formation. FEBS Lett. 383, 93-98
[73]Kuzuhara, T., Nakajima, Y., Matsuyama, K., Natori, S. (1990) Determination of the disulfide array in sapecin, an antibacterial peptide of Sarcophaga peregrina (flesh fly). J Biochem (Tokyo). 107, 514-518
[74]Matsuzaki, K., Nakayama, M., Fukui, M., Otaka, A., Funakoshi, S., Fujii, N., Besshok, Miyajima, K. (1993) Role of disulfide linkages in tachyplesin-lipid interactions. Biochemistry. 32, 11704-11710
[75]Yenugu, S., Hamil, K. G., Birse, C. E., Ruben, S. M., French, F. S., Hall, S. H. (2003) Antibacterial properties of the sperm-binding proteins and peptides of human epididymis 2 (HE2) family: salt sensitivity, structural dependence and their interaction with outer and cytoplasmic membranes of Escherichia coli. Biochem J. 372, 473-483
[76]Park, J. M., Jung, J. E., Lee, B. J. (1994) Antimicrobial peptides from the skin of a Korean frog, Rana rugosa. Biochem Biophys Res Commun. 205, 848-954
[77]Raj, P. A., Karunakaran, T., Sukumaran, D. K. (1999) Synthesis, microbicidal activity, and solution structure of the dodecapeptide from bovine neutrophils. Biopolymers. 53, 281-292