跳到主要內容

臺灣博碩士論文加值系統

(35.172.223.30) 您好!臺灣時間:2021/07/25 12:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李姵芳
研究生(外文):Pei-Fang Lee
論文名稱:文心蘭與阿拉伯芥中調控花器老化及脫離相關基因之選殖與功能性分析
論文名稱(外文):Characterization and Functional Analysis of Genes Controlling Flower Organ Senescence and Abscission from Oncidium Gower Ramsey and Arabidopsis
指導教授:楊長賢楊長賢引用關係
指導教授(外文):Chang-Hsien Yang
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生物科技學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:95
中文關鍵詞:老化脫離乙烯
外文關鍵詞:senescenceabscissionethylene
相關次數:
  • 被引用被引用:1
  • 點閱點閱:200
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
在阿拉伯芥中異位表現Forever Young Flower (FYF)會造成轉殖株提早開花和延遲花器的老化與脫離。為進一步分析FYF在阿拉伯芥中調控的下游基因,將35S::FYF-GR轉基因植物以DEX誘導,再進行cDNA微陣列分析(microarray)的實驗後得到一些受FYF促進與抑制的下游基因,其中五個受FYF促進的基因(DTF1,DTF2,AtERF95,AtERF96與AtERF98)被選殖與進一步探討。異位表現AtERF95、AtERF96與AtERF98之轉基因植物其外表型與野生型阿拉伯芥無差異,而35S::DTF2則出現晚開花、延遲花器老化與脫離的性狀,此外,35S::DTF1更造成植株矮小、晚開花、延遲花器老化與脫離的性狀。為了解DTF1與DTF2的表現位置與其功能之關係,我們利用啟動子分析實驗將DTF1::GUS或DTF2::GUS構築載體轉殖入阿拉伯芥中,結果顯示此兩種轉殖株在授粉前花苞之花萼與花瓣可以偵測到較強的GUS活性,且隨著花朵的成熟與老化其GUS的活性逐漸降低,由此可知,DTF1與DTF2與花器的老化與脫離相關。經即時定量聚合&;#37238;鏈鎖反應(real-time PCR)的結果顯示,與乙烯訊息傳遞相關之部份基因在35S::DTF1與35S::DTF2轉基因植物中受到抑制。將35S::DTF1轉基因植物以乙烯處理後,葉片老化之情況比野生型植物輕微;而35S::DTF2轉基因植物以乙烯處理後,花器老化與脫離之性狀比野生型輕微。因此DTF1與DTF2可能影響乙烯的訊息傳遞。在部分花器老化(senescence)與脫離(abscission)相關基因中,HAESA-LIKE2 (HSL2)在35S::DTF1轉基因植物中被抑制;BLADE-ON-PETIOLE 2 (BOP2)、INFLORESCENCE DEFICIENT IN ABSCISSION (IDA)與HAESA在35S::DTF2轉基因植物中受到抑制。這些結果顯示DTF1與DTF2經由抑制乙烯的訊息傳遞與降低IDA、HAESA和HSL2之基因表現,以控制花器的老化與脫離。

第二章
  文心蘭OnFYF基因與阿拉伯芥之FYF具有高度相似性,其基因轉譯出含225個胺基酸的MADS box蛋白質。在阿拉伯芥中異位表現OnFYF也會出現提早開花和延遲花器老化與脫離之性狀。這些結果意味著OnFYF在文心蘭中也扮演類似FYF的功能,即調控花器的老化與脫離。由此可知,OnFYF與花器的老化與脫離相關。將35S::OnFYF轉基因植物以乙烯處理之後,能延遲葉片之老化,顯示OnFYF可能影響乙烯的訊息傳遞造成轉基因植株比野生型植物不易老化。

Ectopic expression of Forever Young Flower (FYF) caused significantly delayed flower senescence and abscission in transgenic Arabidopsis. To analyze the downstream genes regulated in Arabidopsis, construct containing 35S::FYF fused with glucocorticoid receptor (GR) was transformed into Arabidopsis. Genes up-or down-regulated by FYF were identified using cDNA microarray analysis for dexamethasone (DEX) treated transgenic plants. Five up-regulated gene DTF1, DTF2, AtERF95, AtERF96 and AtERF98 were further characterized. Ectopic expression of AtERF95, 96 and 98 showed phenotypicaly indistinguishable from wild-type plants. However, Ectopic expression of DTF2 caused late flowering and delay of flower senescence and abscission. Moreover, Ectopic expression of DTF1 caused the reducing of plant size, late flowering and delay of flower senescence and abscission. Promoter assay by transforming constructs DTF1::GUS or DTF2::GUS in Arabidopsis indicated that GUS activity was strongly detected in sepals and petals of young flower buds and was significantly decreased in mature flowers. This indicated that DTF1 and DTF2 activity is required for controlling both senescence and abscission of the flower organs. Some downstream genes of ethylene signaling pathway were repressed in 35S::DTF1 and 35S::DTF2 transgenic Arabidopsis. The delay senescence of rosette leaves in 35S::DTF1 Arabidopsis was little affected by the ethylene treatment. The delayed senescence and abscission of the flower organs in 35S::DTF2 Arabidopsis was little affected by the ethylene treatment. Furthermore, the expression of senescence/abscission associated genes was down-regulated (HSL2) and unaffected (BOP1/BOP2/IDA/HAESA) in 35S::DTF1 flowers. The expression of senescence/abscission associated genes was down-regulated (BOP2/IDA/HAESA) and unaffected (BOP1/HSL2) in 35S::DTF2 flowers. Our data suggested a role for DTF1 and DTF2 in controlling the floral senescence and abscission by regulating downstream of ethylene perception and BOP2/IDA/HAESA/HSL2 expression.

第二章
OnFYF , the FYF ortholog from Oncidium Gower Ramsey, was cloned. OnFYF encoded a 225 amino acid protein containing conserved MASD box domain. Transgenic Arabidopsis ectopically expressed OnFYF showed flowering extremely early and significantly delayed flower senescence and abscission. This data imply that OnFYF may play the similar role in regulating flower organ senescence and abscission in Oncidium. It indicated that OnFYF activity is required for controlling both senescence and abscission of the flower organs. The delayed senescence of the rosette leaves in 35S::OnFYF Arabidopsis was unaffected by the ethylene treatment.

第一章 阿拉伯芥中調控花器老化與脫離之相關基因選殖及功能性分析
中文摘要------------------------------------------------------------------------------------------1
英文摘要------------------------------------------------------------------------------------------2
前言------------------------------------------------------------------------------------------------3
材料與方法---------------------------------------------------------------------------------------7
結果----------------------------------------------------------------------------------------------14
一、DTF1、DTF2、AtERF95、AtERF96與AtERF98基因序列之特性分析-----14
二、DTF1、DTF2、AtERF95、AtERF96與AtERF98基因之分子選殖與載體
構築----------------------------------------------------------------------------------14
三、35S::DTF1與35S::DTF2轉基因植物之性狀分析-----------------------------15
四、DTF1與DTF2於35S::FYF轉基因植物中之表現量分析--------------------17
五、DTF1與DTF2之表現情況與啟動子之分子選殖、載體構築與表現分析
----------------------------------------------------------------------------------------17
六、DTF1與DTF2分別於乙烯之訊息傳遞相關基因表現量之分析-----------18
七、DTF1與DTF2分別於離層相關基因表現量之分析--------------------------19
八、35S::DTF1與35S::DTF2轉基因植物對乙烯耐受性之分析----------------19
九、DTF1與DTF2 RNAi質體之構築------------------------------------------------20
十、dtf1突變株基因型與表現之分析-------------------------------------------------21
十一、DTF1與DTF2嵌合抑制質體(chimeric repressor construct)之構築-----22
討論----------------------------------------------------------------------------------------------24
參考文獻----------------------------------------------------------------------------------------27
圖表----------------------------------------------------------------------------------------------31
圖表目次
表1-1、本章所使用之聚合酶連鎖反應所使用之引子序列----------------------------31
表1-2、本章real-time PCR所使用之聚合酶連鎖反應所使用之引子序列----------33
圖1-1、預測DTF1、DTF2、AtERF95、AtERF96與AtERF98 之轉錄因子結合位
置----------------------------------------------------------------------------------------34
圖1-2、DTF1、DTF2、AtERF95、AtERF96、AtERF98與AtRF1~5基因的胺基酸
序列比對-------------------------------------------------------------------------------35
圖1-3、阿拉伯芥中DTF1基因之分子選殖與構築---------------------------------------36
圖1-4、阿拉伯芥中DTF2基因之分子選殖與構築---------------------------------------37
圖1-5、阿拉伯芥中AtERF95基因之分子選殖與構築-----------------------------------38
圖1-6、阿拉伯芥中AtEF96基因之分子選殖與構築------------------------------------39
圖1-7、阿拉伯芥中AtERF98基因之分子選殖與構築-----------------------------------40
圖1-8、DTF1、DTF2、AtERF95、AtERF96與AtERF98之轉基因植物與野生型
阿拉伯芥之開花時間與葉片數之比較-------------------------------------------41
圖1-9、阿拉伯芥異位表現DTF1基因延遲花器老化與脫離---------------------------42
圖1-10、DTF1轉基因植物與野生型阿拉伯芥拔下花萼所需力量之比較----------43
圖1-11、阿拉伯芥異位表現DTF2基因延遲花器脫離----------------------------------44
圖1-12、DTF2轉基因植物與野生型阿拉伯芥拔下花萼所需力量之比較----------45
圖1-13、DTF1、DTF2、ATERF95、AtERF96與AtERF98轉基因植物之鑑定
---------------------------------------------------------------------------------------46
圖1-14、DTF1與DTF2於35S::FYF轉殖株之表現量分析-----------------------------47
圖1-15、以real-time PCR偵測35S::DTF1與35S::DTF2 基因於野生型阿拉伯芥
中的表現量-------------------------------------------------------------------------48
圖1-16、阿拉伯芥中DTF1其上游啟動子之分子選殖與構築-------------------------49
圖1-17、阿拉伯芥中DTF2其上游啟動子之分子選殖與構築-------------------------50
圖1-18、DTF1::GUS與DTF2::GUS轉基因阿拉伯芥的GUS染色圖-----------------51
圖1-19、DTF1與DTF2於乙烯的訊息傳遞基因表現量之分析------------------------52
圖1-20、DTF1與DTF2於離層相關之基因表現量之分析------------------------------53
圖1-21、35::DTF1與35S::DTF2轉基因植物對乙烯處理之分析----------------------54
圖1-22、DTF1 RNAi片段之分子選殖與構築---------------------------------------------55
圖1-23、DTF2 RNAi片段之分子選殖與構築---------------------------------------------56
圖1-24、DTF1 RNAi、dtf1-1與dtf1-2突變株植物與野生型阿拉伯芥之開花時間
與葉片數之比較----------------------------------------------------------------------57
圖1-25、dtf1-1與dtf1-2突變株之基因型鑑定與分析------------------------------------58
圖1-26、DTF1-SRDX與DTF2-SRDX之分子選殖與構築------------------------------59
圖1-27、DTF1與DTF2功能性之假說------------------------------------------------------60
附圖1-1、乙烯訊離傳遞路徑-----------------------------------------------------------------61
附圖1-2、Brookfield CT3-4500 texture analyzer 機器 ---------------------------------62
附圖1-3、Gen-KB DNA Ladder -----------------------------------------------------------63
附圖1-4、pGEM®-T Easy vector 之圖譜 (3015 bp) -------------------------------------64
附圖1-5、pEpyon12K 之圖譜----------------------------------------------------------------65
附圖1-6、pEpyon01K 之圖譜----------------------------------------------------------------66
附圖1-7、pBlueACTi 轉接載體圖譜-------------------------------------------------------67
附圖1-8、pBI-mGFP1 載體圖譜------------------------------------------------------------68
附圖1-9、pEpyon3aK 載體圖譜-------------------------------------------------------------69





第二章
中文摘要----------------------------------------------------------------------------------------70
英文摘要----------------------------------------------------------------------------------------71
前言----------------------------------------------------------------------------------------------72
材料與方法-------------------------------------------------------------------------------------74
結果----------------------------------------------------------------------------------------------77
一、OnFYF 基因之序列分析----------------------------------------------------------77
二、OnFYF基因之分子選殖與載體構築--------------------------------------------77
三、OnFYF 的表現與轉基因植物之性狀分析-------------------------------------78
四、35::OnFYF轉基因植物對乙烯處理較不敏感----------------------------------79
討論----------------------------------------------------------------------------------------------80
參考文獻----------------------------------------------------------------------------------------82
圖表----------------------------------------------------------------------------------------------86


陳銘坤.2008.植物中調控開花時間、花器形成與老化相關基因之選殖與分析.博士論文
Adamczyk BJ, Lehti-Shiu MD, Fernandez DE. 2007. The MADS domain factors AGL15 and AGL18 act redundantly as repressors of the floral transition in Arabidopsis. Plant J 50: 1007-1019.
Alvarez-Buylla ER, Liljegren SJ, Pelaz S, Gold SE, Burgeff C, Ditta GS, Vergara-Silva F, Yanofsky MF. 2000. MADS-box gene evolution beyond flowers: expression in pollen, endosperm, guard cells, roots and trichomes. Plant J 24: 457-466.
Aoyama T, Dong CH, Wu Y, Carabelli M, Sessa G, Ruberti I, Morelli G, Chua NH. 1995. Ectopic expression of the Arabidopsis transcriptional activator Athb-1 alters leaf cell fate in tobacco. Plant Cell 7: 1773-1785.
Bleecker AB, Patterson SE. 1997. Last exit: senescence, abscission, and meristem arrest in Arabidopsis. Plant Cell 9: 1169-1179.
Butenko MA, Patterson SE, Grini PE, Stenvik GE, Amundsen SS, Mandal A, Aalen RB. 2003. Inflorescence deficient in abscission controls floral organ abscission in Arabidopsis and identifies a novel family of putative ligands in plants. Plant Cell 15: 2296-2307.
Cai S, Lashbrook CC. 2008. Stamen abscission zone transcriptome profiling reveals new candidates for abscission control: enhanced retention of floral organs in transgenic plants overexpressing Arabidopsis ZINC FINGER PROTEIN2. Plant Physiol 146: 1305-1321.
Camehl I, Oelmuller R. 2010. Do ethylene response factors-9 and -14 repress PR gene expression in the interaction between Piriformospora indica and Arabidopsis? Plant Signal Behav 5.
Chen L, Cheng JC, Castle L, Sung ZR. 1997. EMF genes regulate Arabidopsis inflorescence development. Plant Cell 9: 2011-2024.
Chen YF, Etheridge N, Schaller GE. 2005. Ethylene signal transduction. Ann Bot (Lond) 95: 901-915.
Ellis CM, Nagpal P, Young JC, Hagen G, Guilfoyle TJ, Reed JW. 2005. AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana. Development 132: 4563-4574.
Fernandez DE, Heck GR, Perry SE, Patterson SE, Bleecker AB, Fang SC. 2000. The embryo MADS domain factor AGL15 acts postembryonically. Inhibition of perianth senescence and abscission via constitutive expression. Plant Cell 12: 183-198.
Frankowski K, Kesy J, Kotarba W, Kopcewicz J. 2008. [Ethylene signal transduction pathway]. Postepy Biochem 54: 99-106.
Fujimoto SY, Ohta M, Usui A, Shinshi H, Ohme-Takagi M. 2000. Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell 12: 393-404.
Gonzalez-Carranza ZH, Rompa U, Peters JL, Bhatt AM, Wagstaff C, Stead AD, Roberts JA. 2007. Hawaiian skirt: an F-box gene that regulates organ fusion and growth in Arabidopsis. Plant Physiol 144: 1370-1382.
Holden MJ, Marty JA, Singh-Cundy A. 2003. Pollination-induced ethylene promotes the early phase of pollen tube growth in Petunia inflata. J Plant Physiol 160: 261-269.
Immink RG, Gadella TW, Jr., Ferrario S, Busscher M, Angenent GC. 2002. Analysis of MADS box protein-protein interactions in living plant cells. Proc Natl Acad Sci U S A 99: 2416-2421.
Jack T. 2001. Plant development going MADS. Plant Mol Biol 46: 515-520.
Jefferson RA, Kavanagh TA, Bevan MW. 1987. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. Embo J 6: 3901-3907.
Jinn TL, Stone JM, Walker JC. 2000. HAESA, an Arabidopsis leucine-rich repeat receptor kinase, controls floral organ abscission. Genes Dev 14: 108-117.
Jones ML, Woodson WR. 1997. Pollination-Induced Ethylene in Carnation (Role of Stylar Ethylene in Corolla Senescence). Plant Physiol 115: 205-212.
Kandasamy MK, Deal RB, McKinney EC, Meagher RB. 2005a. Silencing the nuclear actin-related protein AtARP4 in Arabidopsis has multiple effects on plant development, including early flowering and delayed floral senescence. Plant J 41: 845-858.
Kandasamy MK, McKinney EC, Deal RB, Meagher RB. 2005b. Arabidopsis ARP7 is an essential actin-related protein required for normal embryogenesis, plant architecture, and floral organ abscission. Plant Physiol 138: 2019-2032.
Lloyd AM, Schena M, Walbot V, Davis RW. 1994. Epidermal cell fate determination in Arabidopsis: patterns defined by a steroid-inducible regulator. Science 266: 436-439.
Michaels SD, Amasino RM. 1999. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11: 949-956.
Murashige T, Skoog F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473-479.
Okushima Y, Mitina I, Quach HL, Theologis A. 2005. AUXIN RESPONSE FACTOR 2 (ARF2): a pleiotropic developmental regulator. Plant J 43: 29-46.
Onouchi H, Igeno MI, Perilleux C, Graves K, Coupland G. 2000. Mutagenesis of plants overexpressing CONSTANS demonstrates novel interactions among Arabidopsis flowering-time genes. Plant Cell 12: 885-900.
Parenicova L, et al. 2003. Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world. Plant Cell 15: 1538-1551.
Patterson SE, Bleecker AB. 2004. Ethylene-dependent and -independent processes associated with floral organ abscission in Arabidopsis. Plant Physiol 134: 194-203.
Picard D. 1994. Regulation of protein function through expression of chimaeric proteins. Curr Opin Biotechnol 5: 511-515.
Roberts JA, Elliott KA, Gonzalez-Carranza ZH. 2002. Abscission, dehiscence, and other cell separation processes. Annu Rev Plant Biol 53: 131-158.
Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z, Yanofsky MF, Coupland G. 2000. Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288: 1613-1616.
Schauer M, Chalepakis G, Willmann T, Beato M. 1989. Binding of hormone accelerates the kinetics of glucocorticoid and progesterone receptor binding to DNA. Proc Natl Acad Sci U S A 86: 1123-1127.
Scherrer LC, Picard D, Massa E, Harmon JM, Simons SS, Jr., Yamamoto KR, Pratt WB. 1993. Evidence that the hormone binding domain of steroid receptors confers hormonal control on chimeric proteins by determining their hormone-regulated binding to heat-shock protein 90. Biochemistry 32: 5381-5386.
Sheldon CC, Rouse DT, Finnegan EJ, Peacock WJ, Dennis ES. 2000. The molecular basis of vernalization: the central role of FLOWERING LOCUS C (FLC). Proc Natl Acad Sci U S A 97: 3753-3758.
Sheldon CC, Burn JE, Perez PP, Metzger J, Edwards JA, Peacock WJ, Dennis ES. 1999. The FLF MADS box gene: a repressor of flowering in Arabidopsis regulated by vernalization and methylation. Plant Cell 11: 445-458.
Solano R, Stepanova A, Chao Q, Ecker JR. 1998. Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes Dev 12: 3703-3714.
Stepanova AN, Alonso JM. 2005. Arabidopsis ethylene signaling pathway. Sci STKE 2005: cm4.
Theissen G. 2001. Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol 4: 75-85.
Theissen G, Saedler H. 2001. Plant biology. Floral quartets. Nature 409: 469-471.
Theissen G, Becker A, Di Rosa A, Kanno A, Kim JT, Munster T, Winter KU, Saedler H. 2000. A short history of MADS-box genes in plants. Plant Mol Biol 42: 115-149.
Wang X, Basnayake BM, Zhang H, Li G, Li W, Virk N, Mengiste T, Song F. 2009. The Arabidopsis ATAF1, a NAC transcription factor, is a negative regulator of defense responses against necrotrophic fungal and bacterial pathogens. Mol Plant Microbe Interact 22: 1227-1238.

第二章
陳銘坤.2008.植物中調控開花時間、花器形成與老化相關基因之選殖與分析.博士論文
徐杏芬.2003.文心蘭花朵發育相關之 MADS box 基因之選殖及功能分析.博士論文
許玉妹.1999. 常見的文心蘭切花及盆花品種介紹. 文心蘭栽培管理及採後處理'' 農業推廣手冊21
Adamczyk BJ, Lehti-Shiu MD, Fernandez DE. 2007. The MADS domain factors AGL15 and AGL18 act redundantly as repressors of the floral transition in Arabidopsis. Plant J 50: 1007-1019.
Alvarez-Buylla ER, Liljegren SJ, Pelaz S, Gold SE, Burgeff C, Ditta GS, Vergara-Silva F, Yanofsky MF. 2000. MADS-box gene evolution beyond flowers: expression in pollen, endosperm, guard cells, roots and trichomes. Plant J 24: 457-466.
Bleecker AB, Patterson SE. 1997. Last exit: senescence, abscission, and meristem arrest in Arabidopsis. Plant Cell 9: 1169-1179.
Butenko MA, Patterson SE, Grini PE, Stenvik GE, Amundsen SS, Mandal A, Aalen RB. 2003. Inflorescence deficient in abscission controls floral organ abscission in Arabidopsis and identifies a novel family of putative ligands in plants. Plant Cell 15: 2296-2307.
Cai S, Lashbrook CC. 2008. Stamen abscission zone transcriptome profiling reveals new candidates for abscission control: enhanced retention of floral organs in transgenic plants overexpressing Arabidopsis ZINC FINGER PROTEIN2. Plant Physiol 146: 1305-1321.
Camehl I, Oelmuller R. 2010. Do ethylene response factors-9 and -14 repress PR gene expression in the interaction between Piriformospora indica and Arabidopsis? Plant Signal Behav 5.
Chen L, Cheng JC, Castle L, Sung ZR. 1997. EMF genes regulate Arabidopsis inflorescence development. Plant Cell 9: 2011-2024.
Chen YF, Etheridge N, Schaller GE. 2005. Ethylene signal transduction. Ann Bot (Lond) 95: 901-915.
Ellis CM, Nagpal P, Young JC, Hagen G, Guilfoyle TJ, Reed JW. 2005. AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana. Development 132: 4563-4574.
Fernandez DE, Heck GR, Perry SE, Patterson SE, Bleecker AB, Fang SC. 2000. The embryo MADS domain factor AGL15 acts postembryonically. Inhibition of perianth senescence and abscission via constitutive expression. Plant Cell 12: 183-198.
Frankowski K, Kesy J, Kotarba W, Kopcewicz J. 2008. [Ethylene signal transduction pathway]. Postepy Biochem 54: 99-106.
Fujimoto SY, Ohta M, Usui A, Shinshi H, Ohme-Takagi M. 2000. Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell 12: 393-404.
Gonzalez-Carranza ZH, Rompa U, Peters JL, Bhatt AM, Wagstaff C, Stead AD, Roberts JA. 2007. Hawaiian skirt: an F-box gene that regulates organ fusion and growth in Arabidopsis. Plant Physiol 144: 1370-1382.
Hepworth SR, Zhang Y, McKim S, Li X, Haughn GW. 2005. BLADE-ON-PETIOLE-dependent signaling controls leaf and floral patterning in Arabidopsis. Plant Cell 17: 1434-1448.
Holden MJ, Marty JA, Singh-Cundy A. 2003. Pollination-induced ethylene promotes the early phase of pollen tube growth in Petunia inflata. J Plant Physiol 160: 261-269.
Immink RG, Gadella TW, Jr., Ferrario S, Busscher M, Angenent GC. 2002. Analysis of MADS box protein-protein interactions in living plant cells. Proc Natl Acad Sci U S A 99: 2416-2421.
Jack T. 2001. Plant development going MADS. Plant Mol Biol 46: 515-520.
Jefferson RA, Kavanagh TA, Bevan MW. 1987. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. Embo J 6: 3901-3907.
Jinn TL, Stone JM, Walker JC. 2000. HAESA, an Arabidopsis leucine-rich repeat receptor kinase, controls floral organ abscission. Genes Dev 14: 108-117.
Jones ML, Woodson WR. 1997. Pollination-Induced Ethylene in Carnation (Role of Stylar Ethylene in Corolla Senescence). Plant Physiol 115: 205-212.
Kandasamy MK, Deal RB, McKinney EC, Meagher RB. 2005a. Silencing the nuclear actin-related protein AtARP4 in Arabidopsis has multiple effects on plant development, including early flowering and delayed floral senescence. Plant J 41: 845-858.
Kandasamy MK, McKinney EC, Deal RB, Meagher RB. 2005b. Arabidopsis ARP7 is an essential actin-related protein required for normal embryogenesis, plant architecture, and floral organ abscission. Plant Physiol 138: 2019-2032.
McKim SM, Stenvik GE, Butenko MA, Kristiansen W, Cho SK, Hepworth SR, Aalen RB, Haughn GW. 2008. The BLADE-ON-PETIOLE genes are essential for abscission zone formation in Arabidopsis. Development 135: 1537-1546.
Michaels SD, Amasino RM. 1999. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11: 949-956.
Murashige T, Skoog F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473-479.
Nawy T, Lee JY, Colinas J, Wang JY, Thongrod SC, Malamy JE, Birnbaum K, Benfey PN. 2005. Transcriptional profile of the Arabidopsis root quiescent center. Plant Cell 17: 1908-1925.
Norberg M, Holmlund M, Nilsson O. 2005. The BLADE ON PETIOLE genes act redundantly to control the growth and development of lateral organs. Development 132: 2203-2213.
Okushima Y, Mitina I, Quach HL, Theologis A. 2005. AUXIN RESPONSE FACTOR 2 (ARF2): a pleiotropic developmental regulator. Plant J 43: 29-46.
Onouchi H, Igeno MI, Perilleux C, Graves K, Coupland G. 2000. Mutagenesis of plants overexpressing CONSTANS demonstrates novel interactions among Arabidopsis flowering-time genes. Plant Cell 12: 885-900.
Parenicova L, et al. 2003. Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world. Plant Cell 15: 1538-1551.
Patterson SE, Bleecker AB. 2004. Ethylene-dependent and -independent processes associated with floral organ abscission in Arabidopsis. Plant Physiol 134: 194-203.
Picard D. 1994. Regulation of protein function through expression of chimaeric proteins. Curr Opin Biotechnol 5: 511-515.
Roberts JA, Elliott KA, Gonzalez-Carranza ZH. 2002. Abscission, dehiscence, and other cell separation processes. Annu Rev Plant Biol 53: 131-158.
Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z, Yanofsky MF, Coupland G. 2000. Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288: 1613-1616.
Schauer M, Chalepakis G, Willmann T, Beato M. 1989. Binding of hormone accelerates the kinetics of glucocorticoid and progesterone receptor binding to DNA. Proc Natl Acad Sci U S A 86: 1123-1127.
Scherrer LC, Picard D, Massa E, Harmon JM, Simons SS, Jr., Yamamoto KR, Pratt WB. 1993. Evidence that the hormone binding domain of steroid receptors confers hormonal control on chimeric proteins by determining their hormone-regulated binding to heat-shock protein 90. Biochemistry 32: 5381-5386.
Sheldon CC, Rouse DT, Finnegan EJ, Peacock WJ, Dennis ES. 2000. The molecular basis of vernalization: the central role of FLOWERING LOCUS C (FLC). Proc Natl Acad Sci U S A 97: 3753-3758.
Sheldon CC, Burn JE, Perez PP, Metzger J, Edwards JA, Peacock WJ, Dennis ES. 1999. The FLF MADS box gene: a repressor of flowering in Arabidopsis regulated by vernalization and methylation. Plant Cell 11: 445-458.
Solano R, Stepanova A, Chao Q, Ecker JR. 1998. Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes Dev 12: 3703-3714.
Stenvik GE, Tandstad NM, Guo Y, Shi CL, Kristiansen W, Holmgren A, Clark SE, Aalen RB, Butenko MA. 2008. The EPIP peptide of INFLORESCENCE DEFICIENT IN ABSCISSION is sufficient to induce abscission in arabidopsis through the receptor-like kinases HAESA and HAESA-LIKE2. Plant Cell 20: 1805-1817.
Stepanova AN, Alonso JM. 2005. Arabidopsis ethylene signaling pathway. Sci STKE 2005: cm4.
Theissen G. 2001. Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol 4: 75-85.
Theissen G, Saedler H. 2001. Plant biology. Floral quartets. Nature 409: 469-471.
Theissen G, Becker A, Di Rosa A, Kanno A, Kim JT, Munster T, Winter KU, Saedler H. 2000. A short history of MADS-box genes in plants. Plant Mol Biol 42: 115-149.
Wang X, Basnayake BM, Zhang H, Li G, Li W, Virk N, Mengiste T, Song F. 2009. The Arabidopsis ATAF1, a NAC transcription factor, is a negative regulator of defense responses against necrotrophic fungal and bacterial pathogens. Mol Plant Microbe Interact 22: 1227-1238.





QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top