(18.210.12.229) 您好!臺灣時間:2021/03/01 07:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:謝孝宜
研究生(外文):Hsiao-Yi Hsieh
論文名稱:靜電紡絲法製備聚乳酸及其共聚物纖維支架與特性研究
論文名稱(外文):Preparation and characterization of electrospun poly(L-lactide) and poly(lactide-co-glycolide) fiber scaffold
指導教授:吳宗明吳宗明引用關係
指導教授(外文):Tzong-Ming Wu
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:77
中文關鍵詞:靜電紡絲纖維支架聚乳酸聚乳酸/聚甘醇酸共聚物
外文關鍵詞:electrospinningfiber scaffoldpoly(L-lactide)poly(lactide-glycolide)
相關次數:
  • 被引用被引用:1
  • 點閱點閱:229
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
支架之結構,生物相容性與生物降解性等特性在細胞成長過程中扮演非常重要角色。因此,本研究透過新穎靜電紡絲技術製備相似天然細胞外基質 (extracellular matrix,ECM) 之結構與高空孔性,大比表面積等特點之生物可降解性聚乳酸高分子 (poly(L-lactide),PLLA) 和不同配比之聚乳酸/聚甘醇酸共聚物 (poly(lactide-co-glycolide),PLGA)纖維支架。
  所製備之支架材料經掃描式電子顯微鏡 (Scanning electronic microscopy,SEM) 觀察其微觀結構,結果顯示以靜電紡絲法已成功地製備出纖維直徑分佈於1200 nm至1500 nm間之高空孔性PLLA與不同配比之PLGA纖維支架。同時以X光繞射儀 (X-ray diffraction,XRD) 與示差掃描式熱分析儀 (Different scanning calorimeter,DSC) 分析PLLA及85/15與75/25 PLGA結構性質,結果顯示靜電紡絲快速抽絲特點皆易致使PLLA與不同配比PLGA呈現低結晶性與冷結晶峰產生。此外,利用XRD 1維和2維分析經熱處理過後之纖維支架,結果顯示聚甘醇酸 (polyglycolide,PGA) 添加量愈多雖然易致使結晶度的下降,然而卻有利於順向性之提升;於DSC結果中也可觀察到PGA含量愈多,其吸熱熔融峰往低溫位移與焓值之降低。
纖維支架體外降解測試經SEM觀察顯示,纖維降解的發生隨著降解天數增加,纖維支架開始產生斷裂。比較不同PGA含量纖維支架的降解速率,結果顯示PGA添加量愈多,降解速度愈慢。體外生物相容性測試結果說明PLLA與85/15與75/25 PLGA纖維支架不會對細胞生長造成毒害,且有利於細胞在支架上進行增生。


It is well known that the structure, biocompatibility and biodegradation of characteristic scaffold plays an important role to control the cell growth behavior. Therefore, in this study, the high porosity and surface area with interconnected pore network of biodegradable poly(L-lactide) (PLLA) and poly(lactide-co-glycolide) (PLGA) fiber scaffold were fabricated using electrospun technology. The structure of prepared PLLA and PLGA is similar to the dimension of extracellular matrix (ECM) scaffold.
The micrographs of scanning electronic microscopy (SEM) illustrate that the fiber diameter was distributed between 1200 nm and 1500 nm for PLLA, 85/15 PLGA and 75/25 PLGA fiber scaffold. The structure and property of PLLA, 85/15 PLGA and 75/25 PLGA fiber scaffold were investigated by X-ray diffraction (XRD) and different scanning calorimeter (DSC). The XRD and DSC results indicated that the crystallinity of prepared fiber scaffold with a clear cold crystallization peak was relatively low. In addition, the fiber scaffold was annealed at 120 ℃ for 6 hr and then was measured by one-dimensional and two-dimensional XRD. Experimental result showed the crystallinities decreased by increasing content of PGA. At the same time, the orientation of polymer chain became apparent by adding the PGA. Thermal treatment of PLLA, 85/15 PLGA and 75/25 PLGA fiber scaffold revealed that the melting endotherm became weaker, broader and slightly shifted to low temperatures as content of PGA increased.
The degradation of fiber scaffold was observed by SEM. Experimental result showed that the structural changes of PLLA fiber scaffold during the in vitro degradation, which the fiber scaffold started to break down. Compared to the date of different content of PGA fiber scaffold, the SEM micrographs illustrate that the degradation rate was decreased by increasing content of PGA.
In vitro biocompatibility measurement of PLLA, 85/15 PLGA and 75/25 PLGA fiber scaffold was investigated by optical microscopy. Experimental result indicated that PLLA, 85/15 PLGA and 75/25 PLGA didn’t have toxic effect on MDCK cells, which can be used as the scaffold materials for MDCK cell growth.


摘要………………………………………………………………………I
Abstract…………………………………………………………………II
總目次…………………………………………………………………III
圖目次……………………………………………………………………V
表目次…………………………………………………………………VIII
第一章 緒論…………………………………………………………1
1-1 研究背景……………………………………………………1
1-2 研究動機……………………………………………………3
1-3 研究方向……………………………………………………3
第二章 文獻回顧……………………………………………………4
2-1 生物可分解材料……………………………………………4
2-1-1 聚乳酸 (polylactide)……………………………………4
2-1-2 聚甘醇酸 (polyglycolide)………………………………6
2-1-3 聚乳酸/聚甘醇酸 (poly(lactide-co-glycolide) ……6
2-1-4 降解機制與影響因素………………………………………9
2-2 靜電紡絲 (electrospinning) 製程……………………12
2-2-1 靜電紡絲簡介………………………………………………12
2-2-2 影響纖維形態之參數………………………………………13
2-2-3 系統穩定性之設計…………………………………………22
2-3 靜電紡絲製程對材料結構與性質影響……………………23
2-4 靜電紡絲纖維應用於組織工程……………………………26
第三章 實驗方法與步驟……………………………………………31
3-1 實驗材料……………………………………………………31
3-2 實驗儀器……………………………………………………33
3-3 實驗流程……………………………………………………34
3-4 實驗步驟……………………………………………………35
3-4-1 聚乳酸及其共聚物溶液製備………………………………35
3-4-2 靜電紡絲製程………………………………………………35
3-4-3 生物降解性測試……………………………………………36
3-4-4 生物相容性測試……………………………………………37
3-4-5 纖維支架之退火處理………………………………………37
3-4-6 纖維支架之淬火處理………………………………………37
3-5 實驗儀器分析………………………………………………38
第四章 結果與討論…………………………………………………40
4-1 高分子溶液性質與製程參數對靜電紡絲纖維形態影響…40
4-1-1 高分子溶液濃度對靜電紡絲纖維形態影響………………40
4-1-2 電場強度對靜電紡絲纖維形態影響………………………42
4-1-3 推料速度對靜電紡絲纖維形態影響………………………44
4-1-4 氮氣流率對靜電紡絲纖維形態影響………………………46
4-2 聚乳酸及其共聚物靜電紡絲纖維支架……………………48
4-2-1 PLLA與PLGA纖維支架形態分析……………………………48
4-2-2 PLLA與PLGA纖維支架接觸角分析…………………………48
4-2-3 PLLA與PLGA纖維支架結構分析……………………………53
4-2-4 PLLA與PLGA纖維支架熱性質分析…………………………59
4-3 聚乳酸及其共聚物靜電紡絲纖維支架之體外試驗分析…65
4-3-1 生物降解性測試……………………………………………65
4-3-1-1 微結構觀察…………………………………………………65
4-3-2 生物相容性測試……………………………………………70
第五章 結論…………………………………………………………74
參考文獻…………………………………………………………………75


[1]曾厚,生醫奈米技術,生醫奈米科技教學資源中心,2007。
[2]徐善慧,陳俊宇,科學發展356期,4(2002) 。
[3]徐善慧,科學發展414期,40(2007)。
[4]黃鴻文,技術尖兵,150期,27(2007)。
[5]劉奕君,多孔性聚乳酸/二氧化矽複合支架的製備與特性研究,中興大學材料工程研究所碩士論文,2007。
[6]黃仁波,以冷凍式快速原型法製作組織工程支架,中央大學機械工程研究所碩士論文,2005。
[7]吳政陽,聚乳酸薄膜及複合材料支架製備與物性及生物反應性研究,中興大學材料工程研究所碩士論文,2005。
[8]俞耀庭,生物醫用材料,新文京,2004。
[9]J. Lunt, Polymer Degradation and Stability 59, 145(1998).
[10]G. Scott, Degradable polymers: principles and applications 2nd edition, Kluwer Academic Publishers, 329(2003).
[11]G. Scott, Degradable polymers: principles and applications 2nd edition, Kluwer Academic Publishers, 326(2003).
[12]D.K. Gilding, A.M. Reed, Polymer 20, 1459(1979).
[13]A.M. Reed, D.K.Gilding, Polymer 22, 494(1981).
[14]Y. You, S.W. Lee, J.H. Youk, B-M. Min, S.J. Lee, W.H Park, Polymer Degradation and Stability 90, 441(2005).
[15]K.A. Blackwood, R. McKean, I. Canton, C.O. Freeman,K.L. Franklin, D. Cole, I. Brook, P. Farthing, S. Rimmer, J.W. Haycock, A.J. Ryan, S. MacNeil, Biomaterials 29, 3091(2008).
[16]D.M. Yoon, J.P. Fisher, Biomedical Materials 1st edition, Springer US, 421(2009).
[17]X.S. Wu, N. Wang, Journal of Biomaterials Science, Polymer edition 12, 21(2001).
[18]L. Liu, S. Li, H. Garreau, M. Vert, Biomacromolecules 1, 350(2000).
[19]J. Zeng, X. Chen, Q. Liang, X. Xu, X. Jing, Macromolecular Bioscience 4 ,1118(2004).
[20]H. Tsuji, K. Ikarashi, Polymer Degradation and Stability 85, 647(2004).
[21]吳大誠,杜仲良,高緒珊,奈米纖維,五南書局,2004。
[22]H. Zhou, T.B. Green, Y.L. Joo, Polymer 47, 7497(2006).
[23]T.J. Sil, H.A. von Recum, Biomaterials 29, 1989(2008).
[24]Z-M. Huang, Y-Z. Zhang, M. Kotaki, S. Ramakrishna, Composites Science and Technology 63, 2223(2003).
[25]S-H. Tan, R. Inai, M. Kotaki, S. Ramakrishn, Polymer 46, 6128(2005).
[26]H. Fong, I. Chun, D.K. Reneker, Polymer 40, 4585(1999).
[27]X. Zong, K. Kim, D. Fang, S. Ran, B.S. Hsiao, B. Chu, Polymer 43, 4403(2002).
[28]K.H. Lee, H.Y. Kim, H.J. Bang, Y.H. Jung, S.G. Lee, Polymer 44, 4029(2003).
[29]T. Uyar, F. Besenbacher, Polymer 49, 5336(2008).
[30]A.K. Moghe, R. Hufenus, S.M. Hudson, B.S. Gupta, Polymer 50, 3311(2009).
[31]T. Jarusuwannapoom, W. Hongrojjanawiwat, S. Jitjaicham, L. Wannatong, M. Nithitanakul, C. Pattamaprom, P. Koombhongse, R. Rangkupan, P. Supaphol, European Polymer Journal 41, 409(2005).
[32]L. Zhao, C. He, Y. Gao, L. Cen, L. Cui, Y. Cao, Journal of Biomedical Materials Research Part B: Applied Biomaterials 87B, 26(2008).
[33]D.I. Cha, K.W. Kim, G.H. Chu, H.Y. Kim, K.H. Lee, N. Bhattarai, Macromolecular Research 14, 331(2006).
[34]M.M. Munir, A.B. Suryamas, F. Iskandar, K. Okuyama, Polymer 50, 4935(2009).
[35]J. Xie, C-H. Wang, Pharmaceutical Research 23, 1817(2006).
[36]S. Tripatanasuwan, Z. Zhong, D.H. Reneker, Polymer 48, 5742(2007).
[37]S. Megelski, J.S. Stephens, D.B. Chase, J.F. Rabolt, Macromolecules 35, 8456(2002).
[38]C.L. Casper, J.S. Stephens, N.G. Tassi, D.B. Chase, J.F. Rabolt, Macromolecules 37, 573(2004).
[39]H. Liu, Y-L. Hsieh, Journal of Polymer Science Part B: Polymer Physics 40, 2119(2001).
[40]K.H. Lee, H.Y. Kim, H.J. Bang, Y.H. Jung, S.G. Lee, Polymer 44, 4029(2003).
[41]G. Larsen, R. Spretz, R. Velarde-Ortiz, Advanced Materials 16, 166(2004).
[42]S. Lee, G.D. Moon, U. Jeong, Journal of Materials Chemistry 19, 743(2009).
[43]M. Bognitzki, W. Czado, T. Frese, A. Schaper, M. Hellwing, M. Steinhart, A. Greiner, J.H. Wendorff, Advance Materials 13, 70(2001).
[44]X. Zong, K. Kim, D. Fang, S. Ran, B.S. Hsiao, B. Chu, Polymer 43, 4403(2002).
[45]X. Zong, S. Ran, D.Fang, B.S. Hsiao, B. Chu, Polymer 44, 4959(2003).
[46]M. Spasova, N. Manolova, D. Paneva, R. Mincheva, P. Dubois, I. Rashkov, V. Maximova, D. Danchev, Biomacromolecules 11, 151(2010).
[47]E.P.S. Tan, C.T. Lim, Nanotechnology 17, 2649(2006).
[48]S.G. Kumbar, R. James, S.P. Nukavarapu, C.T. Laurencin, Biomedical Materials 3, 034002(2008).
[49]W-J. Li, C.T. Laurencin, E.J. Caterson, R.S. Tuan, F.K. Ko, Journal of Biomedical Materials Research 60, 613(2002).
[50]S. Agarwal, J.H. Wendorff, A. Greiner, Polymer 49, 5603(2008).
[51]S.G. Kumbar, S.P. Nukavarapu, R. James, L.S. Nair, C.T. Laurencin, Biomaterials 29, 4100(2008).
[52]X. Xu, Q. Yang, Y. Wang, H. Yu, X. Chen, X. Jing, European Polymer Journal 42, 2081(2006).
[53]S.J. Lee, S.H. Oh, J. Liu, S. Soker, A. Atala, J.J. Yoo, Biomaterials 29, 1422(2008).
[54]J.S. Choi, K.W. Leong, H.S. Yoo, Biomaterials 29, 587(2008).
[55]A.K. Moghe, B.S. Gupta, Polymer Reviews 48, 353(2008).
[56]Z. Qi, H. Yu, Y. Chen, M. Zhu, Materials Letters 63, 415(2009).
[57]S. Hou, X. Li, X. Li, Xi Feng, Biofabrication 1, 035004(2009).
[58]T. Kawai, N. Rahman, G. Matsuba, K. Nishida, T. Kanaya, M. Nakano, H. Okamoto, J. Kawada, A. Usuki, N. Honma, K. Nakajima, M. Matsuda, Macromolecules 40, 9463 (2007).
[59]J. Zhang, K. Tashiro, H. Tsuji, A.J. Domb, Macromolecules 41, 1352(2008).
[60]X. Zong, S. Ran, K-S. Kim, D. Fang, B.S. Hsiao, B. Chu, Biomacromolecules 4, 416(2003).
[61]Y. Akutsu-Shigeno, T. Teeraphatpornchai, K. Teamtisong, N. Nomura, H. Uchiyama, T. Nakahara, T. Nakajima-Kambe, Applied and Environmental Microbiology 69, 2498(2003).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔