跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/08/01 13:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張嘉純
研究生(外文):Chia-Chun Chang
論文名稱:以水熱法合成氧化鎢一維奈米核/殼結構及其電變色性質的探討
論文名稱(外文):Hydrothermal synthesis of tungsten oxide core-shell nanostructures and their electrochromic properties
指導教授:何永鈞
指導教授(外文):Yung-Chiun Her
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:58
中文關鍵詞:氧化鎢核-殼奈米結構水熱法電變色性質
外文關鍵詞:Tungsten oxidecore/shell nanostructuresHydrothermal synthesisElectrochromic properties
相關次數:
  • 被引用被引用:2
  • 點閱點閱:151
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗以兩階段水熱法成長一維結晶/非晶氧化鎢奈米核殼結構。第一階段先以高溫高壓水熱法合成一維結晶態的氧化鎢奈米棒,第二階段則是以低溫水熱法在結晶氧化鎢奈米棒外圍包覆非晶的氧化鎢殼層。透過SEM、XRD、TEM分析產物的形貌、結構及組成,證實了第一階段合成的奈米棒為單晶結構的氧化鎢,第二階段合成的包覆層為非晶的氧化鎢。單晶氧化鎢奈米棒的直徑約200 nm,非晶包覆殼層的厚度約80 nm。第一階段一維結晶氧化鎢奈米棒是由氧化鎢奈米細絲以Oriented Aggregation (OA)方式聚集形成,其線徑及長度隨著時間增長而增加。電變色性質的測試中,&;#8208;3.0V 180秒著色及+2.0V 90秒去色時,可分別量得32.30%及75.56%穿透率;達到70%著色需41秒,70%去色則僅需6秒;10次著/去色差異在8%以下。實驗結果顯示,一維氧化鎢奈米核/殼結構兼具非晶結構的高著色效果及結晶結構的高穩定性兩大優點,對於應用於電變色領域具有商業化的潛力。

We reported the synthesis of one-dimensional crystalline/amorphous core-shell tungsten oxide nanostructures by a two-step hydrothermal method. First, the crystalline tungsten oxide core nanostructures were synthesized by using a high-pressure and high- temperature hydrothermal process. Then, the amorphous tungsten oxide shells were coated on the crystalline tungsten oxide core structures by using a low-temperature hydrothermal process. The crystalline structures and morphologies of the as-synthesized products were identified by X-ray diffraction (XRD), Transmission electron microscopy (TEM) and Scanning electron microscopy (SEM) analysis. The results confirmed that the rod-like core structure is single crystalline WO3 and the shell structure is amorphous WOx. The diameters of single-crystalline WO3 nanorods are about 200 nm. The thickness of amorphous shell layer is about 80 nm. We also found that the formation of single-crystalline WO3 nanorods in the first step is governed by the oriented aggregation (OA) mechanism. The diameters and lengths of WO3 nanorods increased with synthesis time. From electrochromic measurement, the transmission of the device fabricated by using crystalline/amorphous core-shell tungsten oxide nanorods in the coloring and bleaching states is 32.3% and 75.56%, respectively. The coloring and bleaching processes to reach 70% of the transmission of the previous state would take 41 seconds and 6 seconds, respectively. After ten-time cycle test, the transmission change is below 8%. Clearly, the electrochromic device fabricated by one-dimensional crystalline/ amorphous core-shell tungsten oxide nanorods has both high coloring efficiency from the amorphous WOx shell layer and high stability from the crystalline WO3 core nanostructure. It may have potential for the applications of electrochromic products.

中文摘要 ……………………………………………………………………... i
英文摘要 ……………………………………………………………………... ii
目錄 ……………………………………………………………………... iii
圖目錄 ……………………………………………………………………... v
表目錄 ……………………………………………………………………... viii
第一章 緒論………………………………………………………………... 1
第二章 文獻回顧…………………………………………………………... 2
2.1  電變色系統的介紹……………………………………………... 2
2.1.1   電變色技術的發展…………………………………………... 2
2.1.2   電變色元件的分類…………………………………………... 4
2.1.3   電變色元件的結構…………………………………………... 6
2.1.4   電變色材料之性能要求……………………………………... 8
2.2  氧化鎢簡介……………………………………………………... 9
2.3  氧化鎢電變色材料的著色機制………………………………... 12
2.4  一維奈米材料的優勢…………………………………………... 13
2.5  一維氧化鎢奈米材料的製備方法……………………………... 14
2.5.1   氣相沉積法…………………………………………………... 14
2.5.2   熱退火………………………………………………………... 15
2.5.3   模板法………………………………………………………... 16
2.5.4   靜電紡絲法…………………………………………………... 17
2.5.5   水熱法……………………………………………………….. 17
2.6  水熱法成長一維氧化鎢奈米結構的成長機制……………….. 20
2.7  氧化鎢一維奈米材料的研究現況……………………………... 21
2.8  研究動機與目的………………………………………………... 24


第三章 實驗方法與步驟…………………………………………………... 25
3.1  實驗設計簡介…………………………………………………... 25
3.2  第一階段高溫水熱法合成……………………………………... 27
3.3  第二階段低溫水熱法合成……………………………………... 27
3.4  場發射掃描式電子顯微鏡分析………………………………... 28
3.5  低掠角X光晶體結構分析……………………………………... 28
3.6  穿透式電子顯微鏡分析………………………………………... 28
3.7  電變色元件的製備……………………………………………... 28
3.7.1   基材前清洗………………………………………................... 28
3.7.2   元件製作………………………………………....................... 29
3.8  階梯電位響應分析………………………………………........... 29
3.9  紫外光-可見光光譜儀分析…………………………………….. 29
第四章 結果與討論………………………………………........................... 31
4.1  第一階段核層製程參數的影響………………………………... 31
4.1.1   前驅物的影響………………………………………............... 31
4.1.2   鹽類的影響………………………………………................... 32
4.1.3   酸鹼值的影響………………………………………............... 34
4.1.4   溫度的影響………………………………………................... 37
4.1.5   時間的影響………………………………………................... 40
4.2  第二階段非晶氧化鎢殼層之包覆狀況……………………….. 45
4.3  非晶氧化鎢奈米棒的形貌……………………………………... 47
4.4  電變色元件之著/去色效果之探討…………………………….. 48
4.5  電變色元件多次著/去色循環之穩定性探討………………….. 51
第五章 結論………………………………………... ……………………... 54
參考文獻………………………………………... ……………………………….. 55

[1]Claes G. Granqvist, Elsevier, Handbook of inorganic electrochromic materials (1995)
[2]P. M. S. Monk, R. J. Mortimer, D. R. Rosseinsky, Electrochromism Fundamentals and Applications, VCH: Weinheim (1995)
[3]http://www.flabegusa.com/
[4]http://eclipsethinfilms.com/home.aspx
[5]Gunnar A. Niklasson and Claes G. Granqvist, Journal of Materials Chemistry, Vol. 17, 2007, pp127-156
[6]A. Antonaia, M.L. Addonizio, C. Minarini, T. Polichetti, M. Vittori-Antisari, Electrochimica Acta, Vol. 46, 2001, pp 2221–2227
[7]J. Zhang, J.P.Tu, X.H.Xia, Y.Qiao, Y.Lu, Solar Energy Materials & Solar Cells, Vol. 93, 2009, pp 1840–1845
[8]Lisa M. Kuti, Surinderjit Singh Bhella, and Venkataraman Thangadurai, Inorganic Chmistry, Vol. 48, 2009, pp 6804-6811
[9]B Deb, S Desai, G U Sumanasekera, and M K Sunkara, Nanotechnology, Vol. 18, 2007
[10]Kazuhiro Sayama, Kazuaki Mukasa, Ryu Abe, Yoshimoto Abe and Hironori Arakawa, Chemcomm Communication, 2001, pp 2416-2417
[11]Jingguo Liu, Zhengjun Zhang, Ye Zhao, Xin Su, Shuang Liu, and Enge Wang, small, Vol. 1, No. 3, 2005, pp 310-313
[12]Mu-Tung Chang, Li-Jen Chou, Yu-Lun Chueh, Yu-Chen Lee, Chin-Hua Hsieh, Chii-Dong Chen, Yann-Wen Lan, and Lih-Juann Chen, small, Vol. 3, No. 4, 2007, pp 658-664
[13]Anıl Agˇıral and J. G. E. (Han) Gardeniers, Journal of Physical Chemistry C, Vol. 112, No. 39, 2008, pp 15183-15189
[14]B. GERAND, G. NOWOGROCKI, J. GUENOT, AND M. FIGLARZ, Journal of Solid State Chemistry, Vol. 29, 1979, pp 429-434
[15]Zhanjun Gu, Huiqiao Li, Tianyou Zhai, Wensheng Yang, Yongyao Xia,
Ying Ma, Jiannian Yao, Journal of Solid State Chemistry, Vol. 180, 2007, pp 98-105
[16]C. Genin, A. Driouiche, B. G6rand and M. Figlarz, Solid State Ionics, 1992, pp 315-323
[17]Wei Cheng, Emmanuel Baudrin, Bruce Dunn and Jeffrey I. Zink, Journal of Materials Chemisty, Vol. 11, 2001, pp 92-97
[18]M. Deepa, D.PP Singh, S.M. Shivaprasad, S.A. Agnihotry, Current Applied Physics, Vol. 7, 2007, pp 220-229
[19]M. Deepa, M. Kar, D.P. Singh, A.K. Srivastava, Shahzada Ahmad, Solar Energy Materials and Solar Cells, Vol. 92, 2008, pp170-178
[20]L. Hechavarría, H. Hu, M. Miranda, M. E. Nicho, Journal of Solid State Electrochem, Vol. 13, 2009, pp 687-695
[21]So Yeon Park, Ji Min Lee, Changho Noh and Seung Uk Son, Journal of Materials Chemistry, Vol. 19, 2009, pp 7959-7964
[22]Chia-Ching Liao, Fu-Rong Chen, Ji-Jung Kai, Solar Energy Materials and Solar Cells, Vol. 90, 2006, pp 1147-1155
[23]Jinmin Wang, Eugene Khoo, Pooi See Lee, and Jan Ma, Journal of Physcial Chemistry C, Vol. 112, 2008, pp 14306-14312
[24]Jinmin Wang, Eugene Khoo, Pooi See Lee, and Jan Ma, Journal of Physcial Chemistry C, Vol. 113, 2009, pp 965-9658
[25]Kunquan Hong, Maohai Xie, Rong Hu, and Huasheng Wu, Applied Physics Letters, Vol. 90, 2007
[26]Kunquan Hong,Wingching Yiu, HuashengWu, Ju Gao and Maohai Xie, Nanotechnology, Vol. 16, 2005, pp 1608-1611
[27]Zhidong Xiao, Lide Zhang, Xike Tian and Xiaosheng Fang, Nanotechnology, Vol. 16, 2005, pp 2647-2650
[28]Xiaofeng Lu, Xincai Liu, Wanjin Zhang, Ce Wanga, Yen Wei, Jounal of Colloid and Interface Science, Vol. 298, 2006, pp 996-999
[29]Shibin Sun, Yimin Zhao, Yongde Xia, Zengda Zou, Guanghui Min and Yanqiu Zhu, Nanotechnology, Vol. 19, 2008
[30]Richard I. Walton, Chemical Society Reviews, Vol. 31, 2002, pp 230-238
[31]Sitthisuntorn Supothina, Panpailin Seeharaj, Sorachon Yoriya, Mana Sriyudthsak, Ceramics International, Vol. 33, 2007, pp 931-936
[32]R. Huirache-Acuña, F. Paraguay-Delgado, M.A. Albiter, J. Lara-Romero, R. Martínez-Sánchez, Materials Characterization, Vol. 60, 2009, pp 932-937
[33]Ruo-Fei Mo, Guo-Qiang Jin, Xiang-Yun Guo, Materials Letters, Vol. 61, 2007, pp 3787–3790
[34]Kai Huang, Qingtao Pan, Feng Yang, Shibing Ni, Xiucheng Wei and Deyan He, J. Phys. D: Appl. Phys., Vol. 41, 2008, 155417 (pp 6)
[35]Xiaoping Shen, Guoxiu Wang, David Wexlera, Sensors and Actuators B, Vol. 143, 2009, pp 325–332
[36]Zhanjun Gu, Tianyou Zhai, Bifen Gao, Xiaohai Sheng, Yaobing Wang, Hongbing Fu, Ying Ma, and Jiannian Yao, J. Phys. Chem. B, Vol. 110, 2006, pp 23829-23836
[37]Gang Gu, Bo Zheng, W. Q. Han, Siegmar Roth, and Jie Liu, Nano Letters, Vol. 2, No. 8, 2002, pp 849-851
[38]Zhidong Xiao1, Lide Zhang, Xike Tian and Xiaosheng Fang, Nanotechnology, Vol. 16, 2005, pp 2647–2650
[39]Jang-Hoon Ha, P. Muralidharan, Do Kyung Kim, Journal of Alloys and Compounds, Vol. 475, 2009, pp 446–451
[40]Hang Qi, Cuiying Wang, and Jie Liu, Adv. Mater., Vol. 15, 2003, pp 411-414
[41]Zongwen Liu, Yoshio Bando, Chengchun Tang, Chemical Physics Letters, Vol. 372, 2003, pp 179–182
[42]Y.B. Li, Y. Bando, D. Golberg, K. Kurashima, Chemical Physics Letters, Vol. 367, 2003, pp 214–218
[43]Kake Zhu, Heyong He, Songhai Xie, Xuan Zhang, Wuzong Zhou, Songlin Jin, Bin Yue, Chemical Physics Letters, Vol. 377, 2003, pp 317–321
[44]Xiao-Lin Li, Jun-Feng Liu, and Ya-Dong Li, Inorganic Chemistry, Vol. 42, No. 3, 2003, pp 921-924
[45]Y. M. Zhao, Y. H. Li, I. Ahmad, D. G. McCartney, and Y. Q. Zhua, APPLIED PHYSICS LETTERS, Vol. 89, No. 133116, 2006,
[46]Chao-Hsuing Chen1, Shui-JinnWang, Rong-Ming Ko, Yi-Cheng Kuo, Kai-Ming Uang, Tron-Min Chen, Nanotechnology, Vol. 17, 2006, pp 217–223
[47]Raghunandan Seelaboyina, JunHuang, Jucheol Park, Dong Hun Kang andWon Bong Choi, Nanotechnology, Vol. 17, 2006, pp 4840–4844
[48]Chandra Sekhar Rout, A. Govindaraj and C. N. R. Rao, J. Mater. Chem., Vol. 16, 2006, pp 3936–3941
[49]Xu Chun Song, Yi Fan Zheng, E. Yang, Yun Wang, Materials Letters, Vol. 61, 2007, pp 3904–3908
[50]Hee-Sang Shim, JeongWonKim, Yung-EunSung, WonBaeKim, Solar Energy Materials and Solar Cells, Vol. 93, Issue 12, 2009, pp 2062-2068
[51]Zhanjun Gu, Ying Ma, Wensheng Yang, Guangjin Zhang and Jiannian Yao, Chem. Commun., 2005, pp 3597–3599
[52]M Stanley Whittingham, Current Opinion in Solid State and Materials Science, Vol. 1, Issue 2, 1996, pp 227-232
[53]M. Stanley Whittingham, Jing-Dong Guo, Rongji Chen, Thomas Chirayil, Gerald Janauer, Peter Zavalij, Solid State Ionics, Vol. 75, 1995, pp 257-268
[54]Clemens Burda, Xiaobo Chen, Radha Narayanan, and Mostafa A. El-Sayed, Chemical Reviews, Vol. 105, No. 4, 2005, pp 1025-1102
[55]X.M. Sun, X. Chen, Z.X. Deng, Y.D. Li, Materials Chemistry and PhysicsVol. 78, 2002, pp 99–104
[56]Bin Liu and Hua Chun Zeng, J. AM. CHEM. SOC., Vol 125, 2003, pp 4430-4431
[57]Shibin Sun, Zengda Zou, Guanghui Min, Materials Characterization, Vol. 60, 2009, pp 437-440
[58]M.Gillet, R.Delamare, E.Gillet, Journal of Crystal Growth, Vol. 279, 2005, pp 93–99
[59]M. Gillet, R. Delamare, E. Gillet, Applied Surface Science, Vol. 254, 2007, pp 270–273
[60]S. Bruyère, V. Potin, M. Gillet, B. Domenichini, S. Bourgeois, Thin Solid Films, Vol. 517, Issue 24, 2009, pp 6565-6568
[61]A.Al Mohammad1, M.Gillet, Thin Solid Films, Vol. 408, 2002, pp 302–309
[62]M.G. Hutchins, N.S. Butt, A.J. Topping, J. Gallego, P. Milne, D. Jeffrey, I. Brotherston, Electrochimica Acta, Vol. 46, 2001, pp 1983–1988.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top