跳到主要內容

臺灣博碩士論文加值系統

(3.236.23.193) 您好!臺灣時間:2021/07/26 07:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉又菁
研究生(外文):Yu-Ching Liu
論文名稱:合成含銅&;#63952;鑽碳膜於輕&;#63754;屬合&;#63754;表面之機械性質與膜層特性之研究
論文名稱(外文):Characterization and Mechanical Properties of Cu-DLC on 7075 Aluminum Alloys
指導教授:施漢章
指導教授(外文):Han-Chang Shih
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:60
中文關鍵詞:含銅類鑽碳膜鋁合金陰極電弧電漿沈積系統
外文關鍵詞:Cu-DLC7075 aluminum alloysresidual stress
相關次數:
  • 被引用被引用:0
  • 點閱點閱:120
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目前能源短缺問題越來越嚴重,環保意識抬頭的情形下,自行車的使用率也越來越高,而汽車工業的發展也趨向於輕量化製程,以減少車體重量造成行車時汽油量的耗損。高強度鋁合金因為其高比強度及重量輕的特性,目前已經廣泛使用於汔機車工業及航太科技上面。但由於其表面耐蝕性及耐磨耗性相較於一般不鏽鋼來講性質還是較差,所以使得在某些機件上不鏽鋼無法完全用鋁合金取代。
類鑽碳膜(diamond-like carbon film, DLC)性質優良,硬度高(約幾十GPa),化學穩定性高,耐腐蝕,抗磨耗等等,不論是在機械、電機、生物及化學等領域上應用廣泛,且製程環境可在室溫下操作,生長方式多樣且製備容易。但由於其硬度高所以容易產生高殘留應力,與基材附著性差,所以目前大多使用不鏽鋼作為基板,以減少硬度梯度所造成的薄膜與基材間的應力破壞。
藉由金屬的摻雜,使薄膜內部能量釋放,藉此降低薄膜內應力,使薄膜與基材間附著性提昇,不受高硬度梯度及高殘留內應力破壞而導致薄膜剝落,增加輕金屬合金與高硬度類鑽碳膜之間的附著性。
本實驗為利用陰極電弧電漿沈積系統,藉由改變乙炔氣體流量找出最佳沈積速率,再藉由改變基材負偏壓,分析對銅含量及薄膜特性及硬度的影響。利用場發射掃描式電子顯微鏡觀察類鑽碳膜表面形貌及痕截面量測薄膜厚度;X 光電子能譜儀分析薄膜成份及各成份鍵結型態;拉曼分析碳的鍵結型態;X 光繞射分析薄膜內銅元素之結晶型態;利用HRTEM 觀察銅原子的顆粒團聚現象,以及由繞射圖形比對銅化合物類型;使用維式硬度測試薄膜硬度,洛式壓痕測試機測試類鑽碳膜對7075 鋁合金之附著性;以水接觸角量測薄膜表面其親水疏水性質,鑑定其表面能大小。
量測結果得到,在乙炔流量50 sccm 時有最高沈積速率,故選擇50 sccm 作為固定流量之參數。利用控制基材負偏壓,發現在 -150 V 時有最佳硬度值,並且與sp3/sp2 比及ID/IG 比結果相互吻合。XPS 及Raman 光譜分析膜層中鍵結型態含有sp3及sp2 鍵結,以及純銅、氮化銅及氧化銅存在,並藉由TEM 及XRD 繞射圖形加以印證比對。並利用洛式壓痕測試附著性,發現摻雜銅的類鑽碳膜均有良好的附著性,壓痕周圍裂痕少,為HF1 等級,顯示銅的添加有助於降低殘留應力並增加附著性。最後以水接觸角測試不同參數下的表面能,發現接觸角介於98 度到112 度之間,與硬度呈正相關,疏水性質良好,表面能低而化學穩定性佳。

Aluminum alloys are widely using in automobile, aerospace and bicycle industry because of its high strength and low density. While its resistance of wear and hardness is not excellent to protect the matrix.
Diamond-like carbon (DLC) thin films contain superior properties, example for high hardness (several tens of GPa), well wear resistance, low friction coefficient, well chemical inertia and high biological compatibility and so on. DLC are widely used in mechanical, biological, electrical. But its adhesion is bad with soft substrate because of the gradient of hardness that induced higher residual stress. We could reduce the residual stress and increasing the adhesion between DLC and substrate by doping metal particles.
Cathodic arc plasma evaporation system (CAPE) is deposited containing copper diamond-like carbon thin films on 7075 aluminum alloys. By controlling ethyne gas flow rate, we could find the best deposition rate. The feature of thin films and hardness is influenced with copper content by changing substrate negative bias. FESEM observed the Cu-DLC morphology and cross section. XPS analyzed the thin film contents and bonding type. Raman spectroscopy detected carbon bonding species and intensity. XRD could tell us the structure in carbon films. HRTEM observed the phenomenon of copper clustering and compare copper oxide with diffraction pattern. Hardness is tested by Vicker''s hardness testing. The Rocker''s testing could determine the adhesion between Cu-DLC and 7075 aluminum alloys. Water contact angle measured the surface energy of Cu-DLC.
The results that we had the highest deposition rate when the ethyne flow rate was 50 sccm。At constant flow rate, changing the substrate negative bias, we found that it was highest hardness value at bias -150 V. The result was coincident with sp3/sp2ratio and ID/IG ratio. XPS and Raman spectrum analysis observed the bonding type including sp3 and sp2, accompany with pure copper and copper oxide, and proved it by TEM and XRD. Rocker''s testing discovered that cracks on DLC/7075 alloys were seldom traces and it was good adhesion with aluminum alloys. Finally, the water contact angle measured that the Cu-DLC was excellent in hydrophobicity and its had the lowest surface energy in negative bias -150 V. It was relative with hardness.


中文摘要---------------------------------------------------------------------------------------------i
英文摘要--------------------------------------------------------------------------------------------ii
目錄-------------------------------------------------------------------------------------------------iii
圖目錄-----------------------------------------------------------------------------------------------v
第一章 前言----------------------------------------------------------------------------------------1
第二章 文獻回顧----------------------------------------------------------------------------------------3
2.1 類鑽碳膜----------------------------------------------------------------------------------------3
2.2 摻雜金屬之類鑽碳膜-------------------------------------------------------------------------5
2.3 類鑽碳膜的殘留應力之消除----------------------------------------------------------------6
2.4 7075 鋁合金------------------------------------------------------------------------------------6
2.5 陰極電弧電漿系統介紹(Cathodic Arc Deposition System)-----------------------------6
2.5.1 陰極電弧電漿系統--------------------------------------------------------------------------7
2.5.1.1 陰極電弧沉積原理------------------------------------------------------------------------7
2.5.1.2 真空電弧(Vacuum Arc)-------------------------------------------------------------------8
2.5.1.3 電弧源(Arc Source)-----------------------------------------------------------------------8
2.5.1.4 靶座外加磁場------------------------------------------------------------------------------9
2.5.1.5 大粒子過濾裝置(Macroparticles Filter)-----------------------------------------------9
2.6 鍍膜成長機制---------------------------------------------------------------------------------11
2.7 電漿與壓力關係------------------------------------------------------------------------------12
2.8 輝光放電---------------------------------------------------------------------------------------12
2.9 大粒子(Macroparticles)----------------------------------------------------------------------13
第三章 實驗步驟與流程 ----------------------------------------------------------------------------------------14
3.1 試片製備及鋁合金前處理----------------------------------------------------------14
3.2 試片清潔---------------------------------------------------------------------------------------14
3.3 合成含銅非晶質碳膜-陰極電弧電漿沉積系統------------------------------------14
3.4 實驗步驟---------------------------------------------------------------------------------------16
3.5 實驗參數對照表------------------------------------------------------------------------------16
3.6 分析儀器及測量原理----------------------------------------------------------------------------------------17
3.6.1 場發射掃描式電子顯微鏡(Field Emission SEM )------------------------------------17
3.6.2 拉曼光譜分析(Raman Spectroscopy)---------------------------------------------------19
3.6.3 化學分析電子儀分析(Electron Spectroscopy for Chemical Analysis, ESCA)----21
3.6.3.1 化學分析電子儀原理---------------------------------------------------21
3.6.3.2 化學位移---------------------------------------------------21
3.6.4垂直面低掠角X 光繞射儀(In-plane GID X-ray Diffraction)-----------------------23
3.6.4.1 X光燒射原理---------------------------------------------------23
3.6.4.2 低掠角X光燒射---------------------------------------------------23
3.6.5 穿透式電子顯微鏡(Transmission Electronic Microscopy)--------------------------24
3.6.6 機械性質分析 ----------------------------------------------------------------------------------------25
3.6.6.1 維式硬度機(Vicker’s hardness)--------------------------------------------------------25
3.6.6.2 洛式硬度機(Rockwell hardness testing machine)-----------------------------------25
3.6.7 水接觸角量測儀--------------------------------------------------------------------------- 25
第四章 結果與討論---------------------------------------------------------26
第一部份、改變乙炔氣體流量部份---------------------------------------------------------26
4.1.1 場發射掃描式電子顯微鏡分析--------------------------------------------------------- 26
4.1.2 X 光電子能譜儀分析---------------------------------------------------------28
4.1.2-1 碳膜組成成份分析--------------------------------------------------------------------- 28
4.1.2-2 碳膜各元素細部掃描圖--------------------------------------------------------------- 28
4.1.2-3 各元素細部分峰------------------------------------------------------------------------ 30
4.1.3 拉曼光譜分析------------------------------------------------------------------------------ 32
4.1.4 低掠角X 光繞射分析-------------------------------------------------------------------- 36
4.1.5 維式硬度測試------------------------------------------------------------------------------ 37
4.1.6 HRB 壓痕測試附著性-------------------------------------------------------------------- 39
第二部份、改變基材偏壓部份---------------------------------------------------------40
4.2.1 場發射掃描式電子顯微鏡分析--------------------------------------------------------- 40
4.2.2 X 光電子能譜儀分析---------------------------------------------------------42
4.2.2-1 碳膜組成成份分析--------------------------------------------------------------------- 42
4.2.2-2 碳膜各元素細部掃描圖--------------------------------------------------------------- 42
4.2.3 拉曼光譜分析------------------------------------------------------------------------------ 45
4.2.4 低掠角X 光繞射分析-------------------------------------------------------------------- 47
4.2.5 穿透式電子顯微鏡微區分析------------------------------------------------------------ 48
4.2.6 維式硬度測試------------------------------------------------------------------------------ 50
4.2.7 HRB 壓痕測試附著性-------------------------------------------------------------------- 51
4.2.8 水接觸角表面能分析--------------------------------------------------------------------- 52
第五章 結論-------------------------------------------------------------------------------------- 54
第一部份:改變流量方面------------------------------------------------------------54
第二部份:改變偏壓方面------------------------------------------------------------54
第六章 參考資料-------------------------------------------------------------------------------- 56

[1] Thomas J. C. Liu, and H. C. Wu, “Fiber direction and stacking sequence
design for bicycle frame made of carbon/epoxy composite laminate”, Mat.&
Design, Vol.31, Issue 4(2010).
[2] C.J. McMahon Jr, S. Woods, and R. Weaver, “Sporting Materials: Bicycle
Frames”, Encyclopedia of Materials: Sci. and Technol., p.8764-8768(2001).
[3] J. Robertson, “Diamond-like amorphous carbon”, Mater. Sci. Eng.,R.37,
p.129-281(2002).
[4] A. Grill, ”Diamond-like carbon: state of the art”, Diamond Relat. Mater.,
Vol.8, p.428-434(1999).
[5] J. Gabler, L. Schafer, H. Westermann, ”Chemical vapor deposition diamond
coated microtools for grinding,milling and drilling”Diamond Relat. Mater.,
Vol.9, p.921-924 (2000).
[6] F. L. Freire Jr., M. E. H. Maia da Costa, L. G. Jacobsohn, D. F.
Franceschini, ”Film growth and relationship between microstructure and
mechanical properties of a-C:H:F films deposited by PECVD”, Diamond
Relat. Mater., Vol.10, p.125-131(2001).
[7] R. Schnuup, R. Kuhnhold, G. Temmel, E. Burte, H. Ryssel, ”Thin carbon
films as electrodes for bioelectronic applications”, Biosens. Bioelectron.,
Vol.13, p.889-894 (1998).
[8] O. Matrumoto, T. Kotaki, H. Shikano, K. Takemura and S. Tanaka, ”Synthesis
of carbon nitride in plasma-arc”, J. Electrochem. Soc., Vol.141, Issue 2,
L.16-18(1994).
[9] Y.J. Zhang, Y.T. Cheng and D.S. Grummom, ”Novel tribological systems
using shape memory alloys and thin films”, Surf. Coat. Technol., Vol.202,
p.998-1002(2007).
[10] S. Kvasnica, J. Schalko, C. Eisenmenger-Sittner, J. Benardi, G. Vorlaufer, A.
Pauschitz and M. Roy, ”Nanotribological study of PECVD DLC and
reactively sputtered Ti containing carbon films”, Diamond Relat. Mater.,
Vol.15, p.1743-1752(2006).
[11] F. Fujimoto and K. Ogata, ”Formation of carbon nitride films by means of
Ion Assisted Dynamic Mixing (IVD) Method”, Jpn. J. Appl. Phys., Vol.32,
L.420-423 (1993).
[12] Y. Oka, M. Yatsuzuka, M. Nishijima and K. Hiraga, ” A 400 μm thickness
diamond-like carbon preparation”, Diamond Relat. Mater., Vol.17,
p.405-408(2008).
57
[13] S. Muhl, E. Camps, L. Escobar-Alarcón, O. Olea, M. Miki, N.
A.Morrison, ”DLC films prepared by electron evaporation of graphite in an
ECR plasma”, Diamond Relat. Mater.,Vol.10, p.915-919 (2001).
[14] C. M. Niu, Y. Z. Lu and C. M. Lieber, ”Experimental ealization of the
Covalent Solid Carbon Nitride”, Science, Vol.261, p.334(1993).
[15] C. M. Lieber and Z. J. Zhang, ”Synthesis of covalent carbon-nitride solids :
Alternative to Diamonds? ”, Adv. Mater., No.6, p.497-499(1994).
[16] R. Gilmore and R. Hauert, “Control of the tribological moisture sensitivity
of diamond- like carbon films by alloying with F, Ti or Si”, Thin Solid
Films, Vol.398 –399, p.199–204(2001).
[17] Y.H. Lin, H.D. Lin, C.K. Liu, M.W. Huang, J.R. Chen, Han C. Shih,
“Structure and characterization of the multilayered Ti-DLC films by FCVA”,
Diamond Relat. Mater., Vol.19, p.1034-1039(2010).
[18] N.M. Chekan, N.M. Beliauski, V.V. Akulich, L.V. Pozdniak, E.K.
Sergeeva, A.N. Chernov, V.V. Kazbanov and V.A. Kulchitsky, “Biological
activity of silver-doped DLC films”, Diamond Relat. Mater., Vol.18,
p.1006-1009(2009).
[19] J.A. Col´on Santana, Ralph Skomski, V. Singh, V. Palshin, A. Petukhov,
Ya. B. Losovyj, Andrei Sokolov, Peter Dowben, Ihor
Ketsmank , ”Magnetism of Cr-Doped Diamond-Like Carbon”, J. Appl.
Phys., Vol.105, 07A930(2009).
[20] C.C. Lin, K.L. Chang, Han C. Shih, “Corrosive behavior of chromium
carbide-based films formed on steel using a filtered cathodic vacuum arc
system”, Appl. Surf. Sci., Vol.253, p.5011-5016(2007).
[21] Y. Yu, and J. Zhang, ”Electrodeposition and characterization of Pd
nanoparticles doped amorphous hydrogenated carbon films”, Solid State
Sci., Vol.11, p.1929-1932 (2009).
[22] W.J. Hsieh, S.H. Lai, L.H. Chan, K.L. Chang, Han C. Shih, ”
Cathodoluminescence and electron field emission of boron-doped a-C:N
films”, Carbon, Vol.43, p.820-826(2005).
[23] Y. Yu, B. Zhang, J. Zhang, ”Fabrication of highly conductive Ru/a-CNx:H
composite films by anode deposit”, Electrochem. Commun., Vol.11,
p.772-775(2009).
[24] W.Y. Wu, J.M. Ting, ”Growth and characteristics of carbon films with
nano-sized metal particles”, Thin Solid Films, Vol.420-421,
p.166-171(2002).
58
[25] N.W. Khun, E. Liu, C.C. Ko, G.C. Yang, W.G. Ma, A.P. Liu, and H. Wang,
“DETECTION OF LEAD AND COPPER WITH NITROGEN DOPED
DIAMOND-LIKE CARBON THIN FILMS”, IWTC,Vol.14, p.87-94
(2010).
[26] V.N. Inkin, G.G. Kirpilenko, A.A. Dementjev and K.I. Maslakov, ” A
superhard diamond-like carbon film”, Diamond Relat. Mater., Vol.9,
p.715-721(2000).
[27] G. Zhang, P. Yan, P. Wang, Y. Chen, J. Zhang, L. Wang, J. Zhang, “The
effect of applied substrate negative bias voltage on the structure and
properties of Al-containing a-C:H thin films”, Surf. Coat. & Technol.,
Vol.202, p.2684-2689(2008).
[28] J.Y. Jao, S. Han, L.S. Chang , Y.C. Chen, C.L. Chang, Han C. Shih, ”
Formation and characterization of DLC:Cr:Cu multi-layers coating using
cathodic arc evaporation”, Diamond Relat. Mater., Vol.18. p.368-373(2009).
[29] A. Sikora , A. Berkesse, O. Bourgeois, J.L. Garden, C. Guerret-Pie’ court, J.
N. Rouzaud, A.S. Loir, F. Garrelie , C. Donnet, ” Structural and electrical
characterization of boron-containing diamond-like carbon films deposited
by femtosecond pulsed laser ablation”, Solid State Sci., p.1-4(2008).
[30]薛仰志,”以過濾式陰極電弧沉積系統合成碳氟薄膜及其鑑定之研究”,
清華大學材料科學工程研究所碩士論文(2007)。
[31]施百勝,”以過濾式陰極電弧沉積系統合成碳氮薄膜及其鑑定之研究”,
清華大學材料科學工程研究所碩士論文(2002)。
[32] J.C. Damasceno and S.S. Camargo Jr., “Plasma deposition and
characterization of silicon oxide-containing diamond-like carbon films
obtained from CH4:SiH4:O2 gas mixtures”, Thin Solid Films, Vol.516,
Issue 8, p.1890-1897(2008).
[33] M. Stüber, S. Ulrich, H. Leiste, A. Kratzsch and H. Holleck, ”Graded layer
design for stress-reduced and strongly adherent superhard amorphous
carbon films”, Surf. Coat. Technol., Vol.116-119, p.591-598(1999).
[34] MatWeb, The Online Materials Database,” Aluminum 7075-T6;
7075-T651”,Automation Creations, Inc.
[35] R.L. Boxman and S. Goldsmith, “Macroparticle contamination in cathodic
arc coatings : generation, transport and control”, Surf. Coat. Technol.,
Vol.52, p.39-50 (1992).
[36] W.J. Hsieh, P.S. Shih, C.C. Lin, C.Y. Wang, Han C. Shih, “Structure and
optical property of the a-C:N films synthesized by filtered cathode vacuum
arc”, Surf. Coat. Technol., Vol.200, p.3175-3178(2006).
59
[37] T. Zehnder, J. Patscheider, “Nanocomposite TiC/a-C:H hard coatings
Deposited by reactive PVD”, Surf. Coat. Technol., Vol.133-134,
p.138-144(2000).
[38] R.L. Boxman, P.J. Martin, D. Sanders, ”Handbook of Vacuum Arc Science
and Technology”, Noyes, New York,(1996).
[39] T. Schuelke, T. Writke, H. J. Scheibe, P. Siemroth, B. Schultrich, O. Zimmer,
and J. Vetter, “Comparison of DC and AC arc films deposition techniques”,
Surf. Coat. Technol. Vol.120-121, p.226-232(1999).
[40] P. Siemroth, T. Schülke, T. Witke, “High-Current arc-a new source for
high-rate deposition”, Surf. Coat. Technol. Vol.68-69, p.314-319(1994).
[41] E. Liu, X. Shi, H. S. Tan, L. K. Cheah, Z. Sun, B. K. Tay and J. R. Shi, ”The
effect of nitrogen on the mechanical properties of tetrahedral amorphous
carbon films deposited with a filterer cathodic vacuum arc”, Surf. Coat.
Technol., Vol.120-121, p.606-606(1999).
[42] E. Erturk, H. J. Heuvel and H. G. Dedrich, “CrN and (Ti,Al)N coatings
deposited by the steered arc and random arc techniques”, Surf. Coat.
Technol. Vol.39-40, p.435-444(1989).
[43] H.D. Steffens, M. Mack, K. Moehwald and K. Reichel, “Reduction of
droplet emission in random arc technology”, Surf. Coat. Technol. Vol.46,
p.65-74(1991).
[44] A. Anders, ”Approaches to rid cathodic arc plasmas of macro and
nanoparticles : a review”, Surf. Coat. Technol. Vol.120-121,
p.319-330(1999).
[45] K. Miernik, J. Walkowicz, ”spatial distribution of microdroplets generated in
the cathode spots of vacuum arcs”, Surf. Coat. Technol., Vol.125,
p.161-166(2000).
[46] J.S. Yoon, J.G. Han, ”The ion current density and spectroscopic study in a
straight magnetic filtering arc deposition system”, Surf. Coat. Technol.
Vol.94-95, p.201-206(1997).
[47] A. Anders, R.A. Macgill, “Twist filter for the removal of macroparticles
from cathodic arc plasmas.” Surf. Coat. Technol. Vol.133-134,
p.96-100(2000).
[48] S. Anders, A, Anders, M.R. Dickenson, R. Macgill, I.G. Brown, “S-Shaped
magnetic macroparticle filter cathodic arc deposition”, IEEE. Trans. Plasma
Sci. Vol.25, p.670(1997).
[49] A. Grill, “Cold Plasma in Materials Fabrication”, IEEE. Press, Sec.1.3, p.11
(1993).
60
[50] K.K. Corvin, S.J. B. Corrigan, J. Chem. Phys. Vol. 50, p.1570(1969).
[51] I.I. Akseno, S.I. Vakula, V.G. Padalka, V.E. Strellnitskii, Sov. Phys. Tech.
Phys., Vol.25, p.1164(1980).
[52]洪志穎, “以陰極電弧沉積TiAlN/CrN多層膜機械性質研究”, 明道管理學
院材料暨系統工程學系碩士論文(2004)。
[53]汪建民, ”材料分析”, 中華材料科學學會(1998)。
[54] W. Heinke, A. Leyland, Mattews, G. Berg, C. Fridrich, E. Brosezeit,
“Evaluation of PVD nitride coatings, using impact, scratch and Rockwell-C
adhesion tests“, Thin Solid Films, Vol.270, p.431-438(1995).
[55] P. C. Eklund, J. M. Holden, R. A. Jishj, “Vibrational modes of carbon
nanotubes ; spectroscopy and theory”, Carbon, Vol.33, p.959-972(1995).
[56] J.H. Kaufman, S. Metin, “Symmetry breaking in nitrogen-doped amorphous
carbon:Infrared observation of the Raman-active G and D bands”, Phys.
Rev. Vol.39, p.13053-13060(1989).
[57] Kutzer, J. and Miller H. C., IEEE. Trans. Plasma Sci., Vol.17, p.688-694
(1989).
[58] M.A. Capano, N.T. McDeutt, R.K. Singh and F. Qian, “Characterization
of Amorphous Carbon Thin Films”, J. Vac. Sci. Technol. A, Vol.14,
p.431-435(1996).
[59] H.C. Tsai, D.B. Bogy, M.K. Kundmann, D.K. Veirs, M.R. Hilton and S.T.
Mayer, J. Vac. Sci. Technol. A, Vol.6, p.2307(1998).
[60] J. Schwan, S. Ulrich, V. Batori, H. Ehrhardt and S.R.P.Silva, “Raman
spectroscopy on amorphous carbon films”, J. Appl. Phys., Vol.80,
p.440-447(1996).
[61] M.A. Tamor and W. C. Vassel, ”Raman Fingerpriniting of Amorphous
Carbon Films”, J. Appl. Phys., Vol.76, p,3923-3830(1994).
[62] M. Ohring, "The Materials Science of Thin Films", San Diego, CA :
Academic Press, 2002.
[63] G. Chen, C. Leu, J. M. Sivertsen, and J. H. Judy, “Sputter-induced
composition effects on the magnetic and microstructure of NiFeCuMo
permalloy thin films”, IEEE Trans. Magn.,Vol. mag.-21,p.1939-1941
(1985).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文