跳到主要內容

臺灣博碩士論文加值系統

(3.235.120.150) 您好!臺灣時間:2021/07/31 13:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:羅昌鴻
研究生(外文):Chang-Hung Lo
論文名稱:黃豆乳製備抗微生物胜&;#32957;之研究
論文名稱(外文):Study on production of antimicrobial peptides from soymilk
指導教授:胡淼琳胡淼琳引用關係
指導教授(外文):Miao-Lin Hu
學位類別:碩士
校院名稱:國立中興大學
系所名稱:食品暨應用生物科技學系所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:82
中文關鍵詞:抗微生物黃豆乳病原菌
外文關鍵詞:anti-microbialsoymilkpathogens
相關次數:
  • 被引用被引用:0
  • 點閱點閱:115
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為探討由黃豆蛋白製備具抗微生物活性胜&;#32957;,應用orientase蛋白&;#37238;由黃豆乳製備蛋白質水解物。實驗以Bacillus subtilis、Pseudomonas aeruginosa、Escherichia coli、Staphylococcus aureus、Salmonella choleraesuis五株病原菌進行研究。結果顯示,orientase 蛋白&;#37238;水解物具抗微生物活性,製備條件為:E/S = 1/100 (w/v) , 50℃, pH 7.0, 1 h。

將蛋白質水解物經由分子篩分離可獲得抗微生物活性更高的抑制物,分離後所得五個主要區分物為:分子量≦3kDa、3-5kDa、5-10 kDa、10 -30kDa、30-50kDa。具有最高活性的區分物分子量為3-5kDa,其對五株病原菌之MIC (minimal inhibitory concentration) 分別為90 μg /mL、100 μg /mL、80 μg/mL、80 μg/mL、80 μg/mL;IC50 (fifty percent inhibitory concentration) 分別為363 μg/mL、286 μg/mL、226 μg/mL、241 μg/mL、230 μg/mL。

探討水解物經腸道中胜&;#32957;&;#37238;水解後活性之變化,應用腸胃消化酵素進行消化水解。結果顯示,3-5kDa區分物經胃蛋白&;#37238;(pepsin)水解(pH 3.0, 37℃)後,抗微生物活性分別下降11.1% 、30.0%、12.5%、25.0%、25.0%;然而再經胰蛋白&;#37238;(trypsin)、胰凝乳蛋白&;#37238;(chymotrysin)水解(pH 8.0, 37℃)後,抗微生物活性維持不變,因此推測3-5kDa區分物經胃消化道,由於消化酵素作用造成抗微生物活性下降。

綜合以上結果顯示可應用黃豆乳之蛋白質為開發製備抗微生物胜&;#32957;之來源;未來可進一步探討對其他菌株之抗微生物性質。

To explore the preparation of antimicrobial peptide activity from soy protein peptides, the orientase were applied for preparing the protein hydrolysates from soy milk. In the experiment, five pathogens, Bacillus subtilis, Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus and Salmonella choleraesuis were focused in this study and it was found that the orientase protein hydrolysates has the feature of antimicrobial activity. The preparation condition was defined as E/S = 1/100 (w/v), 50℃, pH 7.0, 1 h.

Higher antimicrobial activity inhibitor was obtained from separating the protein hydrolysates through the molecular sieve. After separation, five major fractions was obtained as: ≦3kDa, 3-5kDa, 5-10kDa, 10-30kDa and 30-50kDa. The fraction with highest activity had the molecular weight of 3-5kDa; the inhibitory effects of MIC (minimal inhibitory concentration) for five pathogens were 90 μg/mL, 100 μg/mL, 80 μg/mL, 80 μg/mL, 80 μg/mL,repectively. As for IC50 (fifty percent inhibitory concentration), they were 362.7 μg/mL, 286.1 μg/mL, 225.8 μg/mL, 240.6 μg/mL, 229.8 μg/mL,repectively.

We then determined the changes on peptide activity after hydrolysis through the intestine and to apply the gastrointestinal enzymes to digestion test. The results showed that 3-5kDa fraction with pepsin hydrolysis (pH 3.0, 37℃) decreased the anti-microbial activity; and after hydrolyzed through trypsin and chymotrypsin (pH 8.0, 37℃), the anti-microbial activity remained unchanged, therefore, it can be speculated that 3-5kDa fractions by digestive tract, digestive enzyme function as anti-microbial activity caused decreased.

These results suggest that the application of soymilk protein hydrolysis enzyme preparation could develop anti-microbial peptides, which in the future can be further studied and isolated to develop the antimicrobial effects for other microorganism.

中文摘要 I
英文摘要 III
圖表索引 VII
壹、 前言 1
貳、 文獻回顧 2
一、 黃豆簡介 2
二、 抗微生物胜肽(Antimicrobial peptide, AMPs) 3
三、 蛋白質酵素水解 6
參、 材料與方法 11
一、 研究材料 11
二、 實驗架構 12
三、 研究方法 14
(一) 黃豆乳製備 14
(二) 酵素水解物之製備 14
(三) 抗微生物試驗 16
(四) 水解率(degree of hydrolysis;DH) 之測定 18
1. 胺基態氮測定 18
2. 水解前之總氮含量 19
(五) 游離胺基酸 20
(六) 黃豆乳液蛋白質酵素水解物之分子量分佈 23
(七) 最小抑制濃度 ( MIC ) 24
(八) 50% 抑制濃度(IC50) 24
(九) 模擬消化試驗 25
(十) 具抑菌活性胜肽之分離與純化 25
肆、 結果與討論 27
一、 黃豆乳蛋白水解物之製備及其抗微生物活性 27
(一) 水解之pH值與Protein含量之變化 27
(二) 黃豆乳蛋白水解物之抗微生物活性 29
(三) 黃豆乳蛋白之水解率(degree of hydrolysis;DH) 36
(四) 黃豆乳蛋白水解物之游離胺基酸與總胺基酸 39
二、 黃豆乳蛋白水解物區分物之抗微生物活性 43
(一) 黃豆乳蛋白水解物(O1H1)之區分物抗微生物活性 43
(二) 抗微生物之最小抑制濃度( MIC ) 55
(三) 50% 抑制濃度(IC50) 61
三、 模擬消化試驗 63
(一) pepsin對區分物抗微生物活性之影響 63
(二) trypsin及chymotrypsin對區分物抗微生物活性之影響63
四、 抗微生物活性胜肽之純化 68
伍、 結論 77
陸、 參考文獻 79

Adler-Nissen J. Chapter 1: Introduction. Enzymatic Hydrolysis of Food Protein. Elsevier Applied Science Publishers, Essex.; 1-21 (1986)
Arjmandi, B. H., Getlinger, M. J., Goyal, N. V., Alekel, L., Hasler, C. M., Juma, S., Drum, M. L., Hollis, B. W. and Kukreja, S. C., Role of soy protein with normal or reduced isoflavone content in reversing bone loss induced by ovarian hormone deficiency in rats. Am J Clin Nutr 68, 1358S-1363S. (1998)
Beak, H. H., Cadwallader, K. R., Enzymatic hydrolysis of crayfish processing by-products. J. Food Sci. 60: 929-935. (1995)
Boman, H. G., Steiner, H., Hultmark, D., Engstrom, A & Bennich, H. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature, 292, 246–248. (1981).
Boudrant, J. and Cheftel, C.:Continuous proteolysis with a stabilized protease. II. Continuous experiments. Biotechnol. Bioeng., 18: 1735-1749 (1976).
Brantl, V. and Teschemachev, H. A material with opioid activity in bovine milk and milk products. Naunyn-Schmeidebergs Arch Pharmacol. 306: 301- 304 (1979).
Brogden K. A. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria ? Nat Rev Microbial. 3(3): 238-50. (2005)
Clemente, A., Vioque, J & Millan, F. Vegetable protein Hydrolysates. Nutriciony Obesidad 2, 289-296 (1999a).
Clemente, A., Vioque, J., Sanchez-Vioque, R., Pedroche, J., Bautista, J. and Millan, F. Protein quality of chickpea(Cier arietinum L) protein hydrolysates. Food Chem. 67: 269-274 (1999b).
Cope, M. B., Erdman, J. W., and Allison, D. B., The potential role of soyfoods in weight and adiposity reduction: an evidence-based review. Obes Rev 9, 219-235. (2008)
Dinakar Panyam and Arun Kilara. Enhancing the functionality of food proteins by enzymatic modification. Trends in Food Science & Technology April, 7: 120-125 (1996).
Dürr, U.H.N.; Sudheendra, U.S.; Ramamoorthy, A. "LL-37, the only human member of the cathelicidin family of antimicrobial peptides", Biochimica et Biophysica Acta – Biomembranes 1758 (9): 1408–1425 (2006).
FitzGerald, R. J., Meisel, H. Milk protein hydrolysates and bioactive peptides. In: P.F. Fox, & P.L.H. McSweeney (Eds.), Advanced dairy chemistry, Vol. 1: Proteins (3rd ed.) (pp. 675–698). (2003).
Ganz, T. Antimicrobial polypeptides. J.Leukoc Biol. 75, 34-38, (2004).
Gibbs, B. F., Zougman, A., Masse, R., & Mulligan, C. The effect of a-lactalbumin and b-lactoglobulin hydrolysates on the metabolic activity of Escherichia coli JM103. Journal of Applied Microbiology, 87(4), 540–545. (2004).
Gomes, V. M., Carvalho, A. O., Cunha, M. D., Keller, M. N., Bloch, C., Deolindo,P.,et al. Purificationand characterizationofa novel peptide with antifungal activity from Bothrops jararaca venom.Toxicon, 45, 817–827. (2005).
Greaves, K. A., Wilson, M. D., Rudel, L. L., Williams, J. K. and Wagner, J. D., Consumption of soy protein reduces cholesterol absorption compared to casein protein alone or supplemented with an isoflavone extract or conjugated equine estrogen in ovariectomized cynomolgus monkeys. J Nutr 130, 820-826.(2000)
Hanson, L. N., Engelman, H. M., Alekel, D. L., Schalinske, K. L., Kohut, M .L. and Reddy, M.B., Effects of soy isoflavones and phytate on homocysteine, C-reactive protein, and iron status in postmenopausal women. Am J Clin Nutr 84, 774-780. (2006)
In, M. J., et al., Effects of Degree of Hydrolysis and pH on the Solubility of Heme-iron Enriched peptide in Hemoglobin Hydrolysate. Biosci. Biotechnol. Biochem., 67 (2), 365-367, (2003)
Kakali, B., Gautam, M. and Santinath, G. Preparation and Characterisation of Protein Hydrolysates from Indian Defatted Rice Bran Meal. Journal of Oleo Science. 57, (1) 47-52 (2008)
Kitts, D. D., & Weiler, K. Bioactive proteins and peptides from food sources. Applications of bioprocesses used in isolation and recovery. Current Pharmaceutical Design, 9, 1309–1323. (2003).
Korhon, H. Anne Pihlanto Bioactive peptides: Production and Functionality. International Dairy Journal 16, 945-960. (2006)
Korhonen, H. and A. Pihlanto, Food-derived bioactive peptides-opportunities for designing future foods. Current pharmaceutical design, 9(16): p. 1297-1308. (2003).
Lahl,W. J. & Braun, S. D. Enzymatic production of protein hydrolysates for food use. Food Technol. 48:68-71 (1994).
Li, G., Le, G., Shi, Y., & Shrestha, S. Angiotensin I-converting enzyme inhibitory peptides derived from food proteins and their physiological and pharmacological effects. Nutrition Research, 24, 469–486. (2004).
Loukas, S. Varoucha, D. Zioudrou, C. Streaty, R.A. and Klee, W.A.: Opioid activities and structures of a-casein-derived exorphins. Biochemistry 22: 4567- 4573 (1983).
Lukaczer, D., Liska, D. J., Lerman, R. H., Darland, G.., Schiltz, B., Tripp, M. and Bland, J. S., Effect of a low glycemic index diet with soy protein and phytosterols on CVD risk factors in postmenopausal women. Nutrition 22, 104-113. (2006)
Mahmound, M.J. Physicochemical and functional properties of protein hydrolysates in nutritional products. Food Technol. 48: 89-95 (1994).
Meisel, H., & FitzGerald, R. J. Biofunctional peptides from milk proteins: Mineral binding and cytomodulatory effects. Current Pharmaceutical Design, 9, 1289–1295. (2003).
Moor S, Stein WH. Chromatographic determination of amino acids by the use of automatic recording equipment. Methods in Enzymology, Vol. 6. Academic Press Inc., New York. 819-831. (1963).
Mullally, M. M. Meisel, H. & FitzGerald, R. J. Angiotensin I-converting enzyme inhibitory activities of gastric and pancreatic proteinase digests of whey proteins. Int. Dairy Journal. pp. 299-303 (1997).
Pihlanto, A., & Korhonen, H. Bioactive peptides and proteins. In S. L. Taylor (Ed.), Advances in food and nutrition research, Vol. 47 (pp. 175–276). San Diego, USA: Elsevier Inc. (2003).
Reddy, K. V. R., Yedery, R. D., & Aranha, C. Antimicrobial peptides: Premises and promises. International Journal of Antimicrobial Agents, 24, 536–547. (2004).
Sarkar, P. K., Jones, L. J. Craven, G. S., Somerset, S. M. and Palmer, C. Amino acid profiles of kinema, a soybean fermented food. Food Chem. 59: 69-77. (1997)
Shai, Y. and Oren, Z. From“carpet”mechanism to de-novo designed diastereomeric cell-selective antimicrobial peptides. Peptides 22(10): 1629-41. (2001)
Shimizu, M. Food-derived peptides and intestinal functions. BioFactors, 21, 43–47. (2004).
Skerlavaj, B., Benincasa, M., Risso, A., Zanetti, M., & Gennaro, R. SMAP-29: A potent antibacterial and antifungal peptide from sheep leucocytes. FEBS Letters, 463, 58–62. (1999).
Stahmann, M. A. and Woldegioris, G.:Enzymatic methods for protein quality determination. In:Protein Nutritional Quality of Foods and Feeds, part 1, (M. Friendman ed.), p 211. Marcel Dekker, New York, USA (1975)
Valachovicova, T., Slivova, V. and Sliva, D., Cellular and physiological effects of soy flavonoids. Mini Rev Med Chem 4, 881-887. (2004)
Van’t Hof, W., E. C. Veerman, E. J. Helmerhorst and A. V. Amerongen: Antimicrobial peptides:properties and applicability. Biol.Chem., 382, 597-619. (2001)
Young, V. and Pellett, P., Protein evaluation, amino acid scoring and the food and drug administration''s proposed food labeling regulations. The Journal of nutrition 121, 145-150. (1991)
Zasloff, M. Antimicrobial peptides of multicellular organisms.Nature, 415, 389–395. (2002).
Zhang Y, Muramoto K, Yamauchi F. Hydrolysis of soybean protein by a vortex flow filtration membrane reactor with Aspergillus oryzae proteases. J. Food Sci. 61: 928-931. (1996)
Zioudrou, C., Streaty, R. A. and Klee, W. A. Opioid peptides derived from food proteins. J. Biol. Chem. 254 : 2446 -2449 (1979).
Zunying, L., Shiyuan, D., Jie, X., Mingyoung, Z., Hongxia, S., Yuanhui, Z. Production of cysteine rich antimicrobial peptide by digestion of oyster (crassostrea gigas) with alcalase and bromelin. Food Control 19 : 231-235 (2008).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 陳銨漵、邱共鉦(2008)。跆拳道競賽規則修訂對我國選手比賽成績影響之探討。大專體育,97,115-120。
2. 季力康(1996)。運動員的壓力管理。國民體育季刊,25-4,51-57。
3. 陳金燕 (1996b), 自我覺察訓練方案初探, 輔導季刊, 32(3), 43-50.
4. 洪巧菱、洪聰敏(2009)。影響運動表現的心理因素。國民體育季刊,38(2),62-68。
5. 陳金燕 (1996a), 諮商員養成教育中「自我覺察」訓練之基本原則, 諮商與輔導, 125, 14-16.
6. 周文祥(1998):大專足球運動員心理競技能力之研究。體育學報,26,73-80。
7. 邱玉惠、沈建國(2001)。心智訓練在桌球訓練上的應用。大專體育,59,14-20。
8. 林榮培(2002)。跆拳道運動員專項體能與致勝要素探討。中華體育季刊,16(1),112-120。
9. 季力康(1995)。運動員心理技能訓練。大專體育,19,4-8。
10. 盧俊宏(1990)。大專運動員運動競賽特質姓焦慮之研究。體育學報,12,45-70。
11. 廖主民(1993)。誰能超越巔峰?-談優秀運動員的認知型態。中華體育季刊,7(1),100-106。
12. 莊艷惠(2005)。認知策略對青少年女子排球選手賽前狀態性焦慮、心理競技能力之影響。體育學報,38(2),71-84。
13. 13.周德九, “簡介熱電”, 能源季刊, (1990.04), 85-97
14. 張文雄、張展瑋〈2007〉。心智訓練在跆拳道上的應用。大專體育,89,125-130。
15. 陳靜、陳音容、洪聰敏(2005)。中國優秀桌球運動緣壓力來源與因應策略。北體學報,13,39-53。