跳到主要內容

臺灣博碩士論文加值系統

(3.235.120.150) 您好!臺灣時間:2021/08/03 07:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳佑恆
研究生(外文):Yu-Heng Chen
論文名稱:變化切削點數目及位置之多邊形車削
論文名稱(外文):Varying Numbers and Locations of Cutting Points for Polygon Turning
指導教授:莊勝雄莊勝雄引用關係
學位類別:碩士
校院名稱:國立中興大學
系所名稱:機械工程學系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:67
中文關鍵詞:多邊形車削誤差分析刀尖點運動學分析
外文關鍵詞:polygon turningerror analysiscutting pointskinematic analysis
相關次數:
  • 被引用被引用:1
  • 點閱點閱:293
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文的目的在於減少多邊形車削所產生的形狀誤差及增加加工形狀的多樣性。以增加切削點的刀具設計方式,可減少正質數邊多邊形車削形狀誤差。而對於增加多邊形車削的形狀多樣性,可以改變各刀尖點到刀盤中心的距離,配合轉速比S=2,即可產生偶數非等邊多邊形。

多邊形車削為結合同步銑削與車削,且刀盤與工件使用一常數轉速比同時旋轉,以一行程切出多邊形柱體之加工製程。本研究將多邊形車削基本行為視為剛體運動的關係,將刀具與工件之相對運動模型化並進行分析,利用數學矩陣運算方法進行座標轉換,導出刀具相對於工件的運動方程式。

本研究在單刀片搭配與欲切削多邊形之邊數相同轉速比的條件下,用增加刀片上切削點數目進行刀具的設計。本研究中以正三邊形及正五邊形車削進行探討,分析其路徑造成的形狀誤差。接著進行實際加工驗證,設計製造出一兩刀尖點的刀具,在瑞士型加工機上進行正三邊形的切削。其加工結果接近理論上推導的誤差結果。印證以多刀尖刀具切削比用單刀尖刀具切削方法所產生的形狀誤差小。因此增加切削點數目之刀具幾何設計,可以改善形狀誤差。

偶數邊多邊形車削可以多刀片配合轉速比 進行加工,以橢圓刀具路徑之平坦邊來近似直線。將各刀尖點至刀盤中心配置以不同距離,即可切削出偶數非等邊多邊形,如矩形及不等邊六邊形。其產生之切削誤差會介於兩切削邊長所形成之同邊數正偶數多邊形切削形狀誤差值之間。藉此設置,可以增加多邊形車削的形狀選擇性。

The purpose of this research is to reduce the form error and increase the diversity of machinable shapes for polygon turning. Increasing the number of cutting points can reduce form error for prime-number sided polygons. For increasing shape diversity of polygon turning, a non-equilateral polygon with even-number sides can be produced by changing the distances from tool tips to the tool-disk center with speed ratio S=2.

Combining milling and turning synchronously, the cutter and the workpiece simultaneously rotate with a constant speed ratio, polygon turning is a cutting process which can generate a polygonal prism through a single stroke. The basic cutting action of polygon turning is considered as rigid body movement in this research. Analyzing the motion of the tool with respect to the workpiece, kinematic equations of the tool relative to the workpiece are obtained by coordinate transformation using matrix operations.

In the condition that only one blade is used and the speed ratio is equal to the number of sides of the intended polygon, a blade with multi-cutting points is specially designed for the polygon turning process. Form errors for polygon turnings of triangles and pentagons can thus be reduced and their paths causing these error reductions can be theoretically analyzed. Then, a practical tool with two cutting points was manufactured, and a triangular cutting was carried out on a Swiss type automatic machine for verification. The error of the experimental results is close to that obtained by theoretical derivation. The generated form error using a tool with multiple tips is proven less than that using a tool with a single cutting point. It is concluded that a variation of cutter geometry design by increasing the number of cutting points can improve the form error.

Using the flat portions of the elliptic tool path to approximate straight lines, an even-number sided polygon can be turned by using a tool-to-workpiece speed ratio 2:1. Adjusting differently on the distances of cutting blades to the disk-center, even-number sided non-equilateral polygons, such as rectangles and non-equilateral hexagons can be cut out. The error of the generated polygon will be within the error values for the two regular even number sided polygons of which the edge lengths are respectively the same with the two unequal sides of the polygon respectively. With such setup, more alternative shapes will be available using polygon turning.

摘要 i
Abstract ii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 介紹 1
1.1 研究背景 1
1.2 文獻回顧 5
1.3 研究目的與方法 6
1.4 內容大綱 8
第二章 座標轉換與剛體運動 9
2.1 齊次座標及轉換矩陣 9
2.2 剛體運動之描述 11
2.2.1 矩陣連結 12
2.3 刀具路徑運動學 13
第三章 正質數邊多邊形車削 17
3.1 正質數多邊形車削參數 17
3.2 以轉速比1搭配與邊數相同的刀片數 19
3.3 以刀片數1單刀尖點搭配與邊數相同的轉速比 25
3.4 雙刀尖點之正質數邊多邊形車削 30
第四章 偶數非等邊多邊形車削 37
4.1 矩形車削 37
4.2 不等邊六邊形車削 42
4.3 結語 48
第五章 多邊形車削之模擬與設計系統 49
5.1 路徑模擬系統 49
5.2 結語 56
第六章 正三邊形車削實驗及結果 57
6.1 實驗設置與加工參數設定 57
6.2 實驗結果與比較 61
6.3 結語 63
第七章 結論與展望 64
7.1 結論 64
7.2 未來展望 65
參考文獻 66

Bimu SA, “Products-040 line”, website︰http://www.bimu.ch/products.html, 2009.
GE Fanuc Automation, “Machining system upgrade produces precision polygon turning”, MATERIALS & DESIGN, Vol.12, No.4, pp.235, 1991.
Groover, M.P., “Fundamentals of Modern Manufacturing”, 3rd ed., United States: John Wiley & Sons(Asia) Pte Ltd, 2007.
Litvin, F. L. and F. Alfonso, “Gear Geometry and Applied Theory”, Cambridge University Press, second edition, 2004.
Miyano Machinery Incorporated, “Polygon-cutting Attachment”, website︰ http://www.miyano-jpn.co.jp/english/index.html, 2009.
Star Micronics Co. Ltd., “Operation Manual of ECAS-20T Type A/B”,2007.
Tragarz, S., “Polygon Milling”, Tsugami/REM Sales, Midwest Technical Center, Techmical Update 2006.
華啟升,“多面體型面的車削加工”,中國,機械製造,第39卷第2期,頁10-11,2001。
吳焱明,趙韓,徐林森,張棟,“數控車削多面體的誤差分析及其補償”,中國,組合機床與自動化加工技術,第10期,2005。
吳焱明,趙韓,徐林森,張棟,田杰,“數控車削多面體的原理研究”,中國,合肥工業大學學報,第29卷第4期,2006。
趙韓 徐林森 吳焱明 張棟,“固定輪系的旋輪線及在車削多面體中的應用”,中國,農業機械學報,第37卷11期,頁128-128,2006。
莊明忠,“多邊形車削之模擬與設計”,碩士論文,中興大學,2008。
林科余,“動態拉力骨釘單機自動化切削製程”,碩士論文,中興大學,2009。
陳鈞泊,“轉換矩陣法用於具多Holonomic運動對機構之運動分析”,力學系列B 2001第17卷第2期。
陳耀乾,“以可視錐分析工件挾持方位及多軸工具機構型之研究”,碩士論文,成功大學,2002。
洪維恩,“Matlab 7程式設計”,旗標出版股份有限公司。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top