跳到主要內容

臺灣博碩士論文加值系統

(3.236.50.201) 您好!臺灣時間:2021/08/06 07:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:戴裕森
研究生(外文):Yu-Sem Dai
論文名稱:氮源對芭菲爾鞋蘭生長之影響
論文名稱(外文):Effects of Nitrogen on The Growth of Paphiopedilum Orchids
指導教授:林深林林深林引用關係
指導教授(外文):Shen-Lin Lin
學位類別:碩士
校院名稱:國立中興大學
系所名稱:園藝學系所
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:106
中文關鍵詞:硝酸還原&;#37238硝酸還原&;#37238硝酸還原&;#37238硝酸還原&;#37238硝酸還原&;#37238硝酸還原&;#37238硝酸還原&;#37238
外文關鍵詞:nitrogen sourceorganic nitrogeninorganic nitrogennitrate reductasecoir mixnitrogen metabolismaeroponic culture
相關次數:
  • 被引用被引用:4
  • 點閱點閱:224
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究目的在探討Complex type及Maudiae type芭菲爾鞋蘭對氮源的吸收偏好,以及氮源對氮代謝與生長的關係。試驗分為三部分,(一) 椰纖混合介質與樹皮混合介質施用不同型態氮肥對芭菲爾鞋蘭生長之影響。(二) 不同型態氮源於霧氣耕環境下,對芭菲爾鞋蘭之生理反應。(三) 不同型態氮源培養基於器內培養條件下,對芭菲爾鞋蘭之生理反應。
試驗一、使用Complex type芭菲爾鞋蘭種植於2種介質(樹皮混合介質; 椰纖混合介質)及處理4種肥料(Jack,s 2﹝高銨肥﹞; Jack,s 3﹝半量平衡肥﹞; Jack,s 6﹝高硝肥﹞;好康多1號﹝緩釋肥,對照組﹞)。樹皮混合介質中的地上部鮮重及乾重相對生長量與供給的硝態氮比例呈現正相關。且發現經過6個月栽培於椰纖混合介質的植株葉長、葉寬、基部厚,顯著高於樹皮混合介質的植株,足以做為替代性栽培介質。
試驗二、使用Maudiae type芭菲爾鞋蘭於不同型態氮源(全硝﹝ NO3-: NH4+= 100: 0% ; 對照組﹞; 全銨 ﹝NO3-: NH4+= 0:100%﹞; 尿素﹝NO3-:Urea=0:100%﹞)的養液中進行霧耕,檢視芭菲爾鞋蘭的氮同化作用反應。在最長葉長、葉寬方面,以尿素處理高於其他處理。但總鮮重方面,以全硝處理高於其他處理。可溶性蛋白質含量以全硝處理最高,而全銨處理最低。尿素處理的植株根部硝酸還原&;#37238;(nitrate reductase activity; NRA)高於全硝處理,而全銨處理的根部NRA最低,且地上部NRA與可溶性蛋白質含量呈現正相關。
試驗三、使用Maudiae type芭菲爾鞋蘭於不同型態氮源 (MS﹝對照組﹞;全銨; 全硝; 馬鈴薯; 酵母萃取物) 培養基中進行器內培養。培養一個月,以酵母萃取物處理的植株地上部及根部NRA、地上部及根部游離胺基酸、地上部可溶性蛋白質,高於其他處理。且處理全硝的地上部生合成了高於其他處理的游離胺基酸含量,以及處理酵母萃取物的地上部具有較全硝處理稍低的游離胺基酸含量及最高的NRA,並且根部具有高於其他處理的游離胺基酸含量及NRA。培養3個月,酵母萃取物處理、全硝處理及MS處理,的地上部平均鮮重顯著高於馬鈴薯處理及全銨處理,後兩種處理之間也達到5%顯著性差異,以酵母萃取物處理為最高,其次為全硝處理,最低為全銨處理。
推斷酵母萃取物處理可能提供植株足夠的硝態氮,由以上結果可得知芭菲爾鞋蘭屬於喜好硝態氮之作物,且可能在器內的環境下吸收有機氮。


The objective of this study was to find out the preference of nitrogen source use of the Complex type or Maudiae type Paphiopedilum orchids and to study the nitrogen metabolism as well as growth of the orchids related to the nitrogen sources. Three separate experiments were conducted to find the answer. They are: (1) Growth of the paphiopedilum orchids grown in coir mix or in bark mix with different types of nitrogen in fertilizer. (2) The physiological responses of the paphiopedilum orchids to different types of nitrogen in aeroponic culture solution. (3) The physiological responses of the in vitro paphiopedilum orchids with different nitrogen sources in culture media.
In the experiment 1, Complex type Paphiopedilum grown in 2 mediums (coir mix or bark mix), with 4 fertilizer treatments (Jack,2﹝hight ammonium fertilizer﹞; Jack,3﹝half of balance fertilizer﹞; Jack,6﹝hight nitrate fertilizer﹞;Hi-Control 1﹝slow release fertilizer,Control﹞). The coir mix performed better than the bark mix in relative growth rate(RGR) based on leaf span (LS), leaf width (LW), and thickness of the shoot base (TSB). The influence of four fertilizers were behaved differently in two growing mix. In bark mix, J6 fertilizer (with more nitrate-N) was better for the plant growth. In coir mix, there was not much difference shown in between fertilizer treatments. Better cation exchange capacity (CEC) of the coir mix may be showing better fertilizer retention capacity for the more ammonium-N containing fertilizers than for the more nitrate-N containing fertilizer.
In the experiment 2, different types of nitrogen source(nitrate-N﹝NO3-:NH4+ =100:0%; Control﹞; ammonia-N﹝NO3-:NH4+=0:100%﹞; urea-N﹝NO3-:urea=0:100%﹞) in solution used in aeroponic culture of Maudiae type paphiopedilum plants, with check to nitrogen assimilation responses of paphiopedilum orchids. The urea-N was doing better for leaf length (LL) and leaf width (LW). The nitrate-N solution culture had most growth in the fresh weight. The nitrate reductase activity (NRA) was highest in the nitrate-N treated roots, but was lowest in the ammonia-N treated roots. For all treatments, shoot NRA was positively correlated with soluble protein content in the shoot.
In the experiment 3, different types of nitrogen source(MS﹝Control﹞; NH4+ -N; NO3--N; Potato; Yeast extract) in mediums used in vitro culture Maudiae type pahiopedilum plantlets. After 1 month culture, the highest NRA in shoot and the highest NRA in root, were found in Yeast Extract treated plants. Those plants also had highest free amino acid in both shoot and root, and the shoot soluble protein was the most among all treatment. After 3 month culture, the shoot fresh weight for five N treatments were ranked as Yeast Extract > Nitrate-N > potato > MS-N > Ammonia-N.
We concluded with a preference use of nitrate-N for the paphiopedilum orchids plants. And this orchid may has the ability to use organic nitrogen directly in vitro.


中文摘要 I
英文摘要 II
表目次 VIII
圖目次 X
附錄目次 XII
前言 1
前人研究 3
一、 芭菲爾鞋蘭之分類 3
二、 芭菲爾鞋蘭原生地之介紹 3
三、 芭菲爾鞋蘭光合作用特性 4
四、 蘭科植物根部構造 4
五、 蘭科植物根部型態對養分吸收模式的關係 5
六、 介質介紹 6
七、 植物氮肥吸收 7
八、 土壤微生物與根部競爭氮源的關係 9
九、 植物體內硝酸態氮同化作用的關鍵酵素 10
材料與方法 12
試驗一、椰纖混合介質與樹皮混合介質施用不同型態氮肥對芭菲爾鞋蘭生長之影響 12
一、 試驗材料 12
二、 試驗方法 12
(一) 試驗處理 12
(二) 調查項目 13
1. 生長量調查 13
2. 植體大量元素及微量元素(Macro and micro elements)分析 13
3. 介質中可分解成分中之全氮(Total nitrogen)分析 14
4. 介質中游離氮(Free nitrogen)分析 14
5. 介質物理性(Physical properties)分析 15
6. 介質陽離子交換能力(Cation exchange capacity, CEC) 15
7. 介質EC及pH值測定 16
8. 根毛形態與根部組織之顯微構造 16
9. 根部組織構造之石蠟切片 16
三、 統計分析 17
試驗二、不同型態氮源於霧氣耕環境下,對芭菲爾鞋蘭之生理反應 18
一、 試驗材料 18
二、 試驗方法 18
(一) 試驗處理 18
(二) 調查項目 18
1. 生長量調查 18
2. 養液中游離大量元素與微量元素分析……………………………… 19
3. 植物體可溶性蛋白質(Soluble protein)分析 19
4. 植物體游離胺基酸(Free amino acid)分析 20
5. 植物體硝酸還原酶活性(Nitrate reductase activity; NRA)分析 20
6. 養液pH值測定 20
三、 統計分析 20
試驗三、不同型態氮源培養基於器內培養條件下,對芭菲爾鞋蘭之生理反應 21
一、 試驗材料 21
二、 試驗方法 21
(一) 試驗處理 21
(二) 調查項目 21
1. 生長量調查 21
2. 全氮(Total nitrogen)分析 21
3. 大量元素及微量元素分析 22
4. 可溶性蛋白質(Soluble protein)分析 22
5. 游離銨及游離硝(Free NH4+、NO3—)分析 22
6. 游離胺基酸(Free amino acid)分析 22
7. 植物體硝酸還原酶活性(Nitrate reductase activity; NRA)分析 23
三、統計分析 23
結果 24
試驗一、椰纖混合介質與樹皮混合介質施用不同型態氮肥對芭菲爾鞋蘭生長之影響 24
一、 相對生長量 24
二、 植物體全氮含量變化 25
三、 植物體磷元素含量變化 25
四、 植物體鉀元素含量變化 26
五、 介質內全氮含量變化 26
六、 介質表面吸附游離銨態氮與游離硝態氮變化情形 27
七、介質酸鹼值(pH值)、電導度(EC值)、陽離子交換能力(CEC值)變化情形 28
八、 椰纖混合介質及樹皮混合介質之物理特性 28
九、 芭菲爾鞋蘭根部組織結構與根毛型態 29
試驗二、不同型態氮源於霧氣耕環境下,對芭菲爾鞋蘭之生理反應 49
一、 於霧氣耕條件下,不同氮源對芭菲爾鞋蘭相對生長量之影響 49
二、 於霧氣耕條件下,不同氮源對芭菲爾鞋蘭游離胺基酸的影響 49
三、 於霧氣耕條件下,不同氮源對芭菲爾鞋蘭可溶性蛋白質的影響 49
四、 於霧氣耕條件下,不同氮源對芭菲爾鞋蘭硝酸還原酶的影響 49
五、 於霧氣耕條件下,芭菲爾鞋蘭的硝酸還原酶對游離胺基酸及可溶性蛋白質的影響 49
六、 於霧氣耕條件下,各處理於1-4週養液中游離硝及游離銨之變化 50
八、 於霧氣耕條件下,各處理養液於一週內,pH值之變化 50
試驗三、不同型態氮源培養基於器內培養條件下,對芭菲爾鞋蘭之生理反應 56
一、 生長量 56
二、 營養元素之變化 57
三、 游離銨及游離硝之變化 63
四、 游離銨基酸之變化 64
五、 蛋白質之變化 65
六、 硝酸還原酶活性(NRA)之變化 65
討論 74
試驗一、椰纖混合介質與樹皮混合介質施用不同型態氮肥對芭菲爾鞋蘭生長之影響 74
一、 相對生長量 74
二、 植物體全氮含量變化 76
三、 植物體磷元素含量變化 77
四、 植物體鉀元素含量變化 77
五、 介質內全氮含量變化 78
六、 介質表面吸附游離銨態氮與游離硝態氮變化情形 79
七、 介質理化性質對芭菲爾鞋蘭生長之影響 79
試驗二、不同型態氮源於霧氣耕環境下,對芭菲爾鞋蘭之生理反應 81
一、 於霧氣耕條件下,不同氮源對芭菲爾鞋蘭生長之影響 81
二、 於霧氣耕條件下,不同氮源對芭菲爾鞋蘭游離胺基酸、可溶性蛋白質及硝酸還原酶的影響 81
三、 於霧氣耕條件下,大量元素及微量元素之變化 82
四、 於霧氣耕條件下,各處理養液於一週內,pH值之變化 82
試驗三、不同型態氮源培養基於器內培養條件下,對芭菲爾鞋蘭之生理反應 83
一、 生長量與全氮量之關係 83
二、 不同氮源對其他大量、微量元素吸收及利用的影響 83
三、 不同氮源對芭菲爾鞋蘭體內游離銨、游離硝、游離胺基酸、可溶性蛋白質、硝酸還原酶活性之間的關係 86
四、 不同氮源對硝酸還原酶活性之影響 89
五、 游離胺基酸與硝酸還原酶活性之關係 89
結論 91
參考文獻 93


王瑞章、孫文章、胡文若、陳俊仁、江文錦. 2006. 栽培介質對盆栽文心蘭生育與開花品質之影響 . 台南區農業改良場研究彙報. 47:9-16.
王銀波. 1985. 植物營養學. 國立中興大學出版. 台中. p.23-53.
何念祖、孟賜福. 1987. 植物營養原理. 上海科學技術出版社. p.407-429.
李哖. 1989. 固體屆質之養液栽培. 沈再發. 許淼淼及徐森彥主編. 養液栽培技術講習會專刊第二輯. 行政院農業委員會. p.78-87.
卓家榮. 2005. 柑桔土壤肥力檢測及營養診斷技術. 農委會台南區農改場. p.177-191.
范黎、郭順星、肖培根. 2000. 密花石斛等六種蘭科植物菌根的顯微結構研究. 植物學通報. 17(1): 73-79.
梁天干、鄭伸坤. 1984. 三種武夷蘭花營養器官的形態解剖. 福建農學院學報.13(2): 147-154.
陳建中. 2002. 多種肥培管理措施對小白菜硝酸態氮含量之影響. 國立中興大學土壤環境科學系碩士論文. 台中.
張廣淼、吳添益、蔡正賢. 2008. 介紹椰纖土不同比例栽培介質的理化性與應用.苗栗區農業改良場專訊. 41: 7-8.
張仁銓. 2007. 人工培植拖鞋蘭證明文件申請簡介及出口管理現況. 農政與農情. 178: 54-57.
蔡淑華. 1992. 植物組織切片技術綱要. 茂昌圖書有限公司. 台北.
蔡淑華. 1973. 植物解剖學. 世界書局.台北. p.189-197
蕭竹儀. 2000. 芭菲爾鞋蘭生育、形態解剖、光合作用特性與栽培技術之研究. 國立台灣大學園藝學系碩士論文. 台北. p.35-47.
Atkins, C.A. 2000. Biochemical aspects of assimilate transfers along the phloem path: N-solutes in lupins. Aust. J. Plant Physiol. 27: 531–537.
Britto, D.T. and H.J. Kronzucker. 2002. NH4+ toxicity in higher plants: a critical review. J. Plant Physiol. 159: 567–584.
Braem, G.J. 1998. New albinos in Paphiopedilum- Orchidées. Culture et prot. 36: 35-38.
Bush, D.R. 1993. Proton-coupled sugar and amino-acid transporters in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44: 513-542.
Bragg, N.C., B.J. Chambers. 1988. Interpretation and advisory applications of air- filled porosity (AFP) measurements. Acta Hort. 221: 35-44.
Breeze, V.G., A.D. Robson., and M.J. Hopper. 1985. The uptake of phosphate by plants from flowing nutrient solution. J. Exp. Bot. 52(166): 725-733.
Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72(1-2): 248-254.
Cazetta, J.O. and L.C.V. Villela. 2004. Nitrate reductase activity in leaves and stems of tanner grass (Brachiaria radicans Napper). Sci. Agric. 61(6): 640-648.
Crawford, N.M., M. Kahn., T. Leustrek., and S. Long. 2000. Nitrogenand sulphur. In Biochemistry & Molecular Biology of Plants. Eds. R Buchanan, W Gruissem and R Jones. The Am. Soc. Plant Physiol, Waldorf. 786–849.
Campbell, W.H. 1999. Nitrate reductase structure, function and regulation: Bridging the gap between biochemistry and physiology. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 277–303.
Crawford, N.M. 1995. Nitrate: Nutrient and signal for plant growth. The Plant Cell. 7: 859-868.
Chapin III, F.S., L. Moilanen., and K. Kielland. 1993. Preferential use of organic nitrogen for growth by a non-mycorrhizal arctic sedge. Nature. 361:150–153.
Cash, C. 1991. The Slipper Orchids, Timber Press ISBN 0-88192-183-1.
Clarkson, D.T. and U. Lüttge . 1990. Mineral nutrition: inducible and repressible nutrient transport systems. Progress Bot. 52: 61–83.
Chapman, H.D. and P.F. Pratt. 1961. Metheds of analysis for soils and waters. Univ. Cal., Riverside, U. S. A.
Dose, M.M., M. Hirasawa., S. Kleis-SanFrancisco., E.L.Lew., and D.B. Knaff. 1997. The ferredoxin-binding site of ferredoxin:nitrite oxidoreductase. Differential chemical modification of the free enzyme and its complex with ferredoxin. Plant Physiol. 114: 1047-1053.
De, B.M., and O. Verdonck. 1972. The physical properties of the substrates in horticulture.Acta Hortic. 26: 37-44.
Evans, M.R., S. Kondura., and R.H. Stamps. 1996. Source variation in physical and chemical properties of coconut coir dust. HortScience 31: 965-967.
Elliott, W.H. 1953. Isolation of glutamine synthetase and glutamotransferase from green peas. J. Biol. Chem. 201(2): 661-72.
Fernandes, C. and J.E.Corá. 2004. Bulk density and relationship air/water of horticultural substrate. Sci. Agric. 61(4): 446-450.
Forde, B.G. and D.T. Clarkson. 1999. Nitrate and ammonium nutrition of plants:Physiological and molecular perspectives. Adv. Bot. Res. 30: 1-90.
Feng, J., R.J. Volk., and W.A. Jackson 1998. Source and magnitude of ammonium generation in maize roots. Plant Physiol. 118: 835–841.
Fernandes, M.S. and R.O.P.Rossiello. 1995. Mineral nutrition in plant physiology and plant nutrition. Critical Rev. Plant Sci. 14: 111–148.
Garnica, M., F. Houdusse., J.C. Yvin., and J.M.Garcia-Mina. 2009. Nitratemodifies urea root uptake and assimilation in wheat seedlings. J. Sci. Food Agric. 89: 55–62.
Gilmer, F., K.W.T. Herdel., and U. Schurr. 2001. Nutrient transport in the xylem of intact plants dirunal variation and response to nutrient availability. Develop. Plant Soil Sci. 92: 270~271.
García-Sánchez, M.J., M. Paz Jaime., A. Ramos., D. Sanders., and J. A. Fernández. 2000. Sodium-dependent nitrate transport at the plasma membrane of leaf cells of the marine higher plant zostera marina L. Plant Physiol. 122: 879–885.
Garnier, E., O. Gobin., and H. Poorter. 1995. Nitrogen productivity depends on photosynthetic nitrogen use efficiency and nitrogen allocation within the plant. Ann. Bot. 76: 667-672.
Gahoonia, T.S., N. Claassen., and A. Jungk. 1992. Mobilization of phosphate in different soils by ryegrass supplied with ammonium or nitrate. Plant Soil. 140: 241-248.
Hawkins, H.J., G. Wolf., and W.D. Stock. 2005. Cluster roots of Leucadendron laureolum(Proteaceae) and Lupinus albus(Fabaceae). Take up glycine intact: An adaptive strategy to low mineral nitrogen in soils? Ann. Bot. 96: 1275–1282.
Henriques, A.R.D.P., and L.F.M. Marcelis. 2000. Regulation of growth at steady-state nitrogen nutrition in Lettuce (Lactuca sativa L.): Interactive effects of nitrogen and irradiance. Ann. Bot. 86: 1073-1080.
Hew, C.S., L.Y. Lim., and C.M. Low. 1993. Nitrogen uptake by tropical orchids. Environ. Exp. Bot. 33: 273–281.
Handreck, K.A. 1993. Properties of coir dust, and its use in the formulation of soilless potting media. Commun. Soil Sci. Plant Anal. 24: 349–363.
Hendershot, W.H. and M. Duquette. 1986. A simple barium chloride method for determining cation exchange capacity and exchangeable cations. Soil Sci. Soc. Am. J. 50: 605-608
Hegeman, R.H. 1971. Nitrate reductase from higher plants【J】. Methods Enzymol. 23: 491-503.
Hoagland, D.R. and D.I. Arnon. 1950. The water-culture method for growing plants without soil. Cal. Agric. Exp. Stat. 347.
Imsande, J. and B. Touraine. 1994. N demand and the regulation of nitrate uptake. Plant Physiol. 105: 3-7.
Isaac, R.A., J.D. Kerber. 1971. Atomic absorption and flame photometry: Techniques and uses in soil, plant and water analysis. In: L.M.Walsh(Ed.). Instrumental methods for analysis of soils and plant tissue.Soil Sci. Soc. Amer., Inc., Madison, WI. 17-37.
Jone, D.L., J.R. Healey., V.B. Willett., J.F. Farrar., and A. Hodge. 2005. Dissolved organic nitrogen uptake by plants-an important N uptake pathway? soil bio. biochem. 37: 413-423.
Jone, D.L. and A. Hodge. 1999. Biodegrad kinetics and sorption reactions of three differently charged amino acids in soil and their effects on plant organic nitrogen availability. Soil bio. biochem. 31: 1331-1342.
Jaworski, E.G., 1971. Nitrate reductase assay in intact plant tissues. Biochem. Biophys. Res. Commu. 43: 1274–1279.
Karaivazonglou, N.A., D.K. Papakosta., and S. Divanidis. 2005. Effect of chloride in irrigation water and from of nitrogen fertilizer of Virginia(flue-cured)tobacco. Field Crop Res. 92: 61-74.
Katarzyna, K., G. Kłobus., and M. Janicka-Russak. 2003. Nitrate transport across the tonoplast of Cucumis sativus L. root cells. J. Plant Physiol. 160: 523–530.
Kühn, C., M. Hajirezaei., A.R. Fernie., U. Roessner-Tunali., T. Czechowski., B. Hirner., and W.B. Frommer. 2003. The sucrose transporter StSUT1 localizes to sieve elements in potato tuber phloem and influences tuber physiology and development. Plant Physiol. 31: 102–113.
Kaye, J.P. and S.C. Hart. 1997. Competition for nitrogen between plants and soil microorganisms. Trends Ecol. Evol. 12(4): 139-143.
Kanwarpal, S.D. and J.G. Waines. 1989. Analysis of nitrogen accumulation and use in bread and durum wheat [J ]. Crop Sci. 29(9 - 10): 1232-12391.
Kato, T. 1986. Nitrogen metabolism and utilization in citrus. Horti. Rev. 8: 181-216.
Kluge, M. and I.P. Ting. 1978. Crassulacean acid metabolism: Analysis of an ecological adaptation. Ecological. studies. V.30 Spinger-Verlag, Berlin, New York.
Kowalsky, A., C. Wyttenbach., L. Langer., and J.D.E. Koshland. 1956. Transfer of oxygen in the glutamine synthetase reaction. J. Bio. Chem. 219(2): 719-725.
Lu, Y.X., C.J. Li, and F.S. Zhang. 2005. Transpiration,potassium uptake and flow in tobacco as affected by nitrogen froms and nutrient levels.Ann. Bot. 95: 991-998.
Leigh, R.A. and K. Branson. 1981. Growth of root hairs. Rothamstcd Exp. Stat. Ann. Rep. PartI. 262.
Mérigout, P., M. Lelandais., F.B., J. Renou., X. Briand., C. Meyer., and F. Daniel-Vedele. 2008. Physiological and transcriptomic aspects of urea uptake and assimilation in arabidopsis plants. Plant Physi. 147: 1225–1238.
Miller, A.J. and M.D. Cramer. 2004. Root nitrogen acquisition and assimilation. Plant and soil. 274: 1-36.
Mathilde, O., F. Sophie., F. Vincent., and D.V. Francoise. 2002. Nitrate transport in plants: which gene and which control? J. Exp. Bot. 53(370): 825-833.
Majerowicz, N., C.C. Nievola., R.M. Susuki., and G.B. Kerbauy. 2000. Growth and nitrogen metabolism of Catasetum fimbriatum plants(Orchidaceae) grown with different nitrogen sources. Environ. Exp. Bot. 44: 195–206.
Matrinez, V. and A. Cerda. 1989. Nitrate reductase activity in tomato and cucumber leaves as influenced by NaCl and N source. J. Plant Nutri. 12: 1335-1350.
Morris, M.W. 1996. Vegetative anatomy and systematic of subtribe Dendrobiinae (Orchidaceae). Bot. J. Linn. Soc. 120: 89-144.
Mohana, P.R. and S.M. Khasim. 1987. Anatomy of some member of Coelogyninae (Orchidaceae). Phytomorphology. 37(2,3): 191-199.
Mengel, K. and E. A. Kirkby. 1986. principles of plant nutrition. Man Chang Book Co.
Miller, R.H. and E.L. Schmidt. 1965. Uptake and assimilation of amino acids supplied to the sterile soil:root environment of the bean plant (Phaseolus vulgaris). Soil Sci. 100: 323-330.
Murashige, T. and F.A. Skoog. 1962. revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473-97.
Näshol, T., A. Ekblad., A. Nordin., R. Giesler., M. Högberg., and P. Högberg. 1998. Boreal forest plants take up organic nitrogen. Nature. 392: 914–916.
Okumoto, S., W. Koch., M. Tageder., W.N. Fischer., A. Biehl., D. Leister., Y.D. Stierhof., and W. B. Frommer. 2004. Root phloem-specific expression of the plasma membrane amino acid proton co-transporter AAP3. Journal of Experimental Botany. 55(406): 2155–2168.
Persson, J. and T. Nasholm. 2001. Amino acid uptake: a widespread ability among boreal forest plants. Ecol. Letters. 4: 434-438.
Pridgeon, A.M. 1987. Orchid biology: reviews and perspectives. Vol. IV. Cornell University Press, Ithaca New York.
Pate, J.S. and P.J. Sharkey. 1975. Xylem to phloem transfer of solutes in fruiting shoots of legumes, studied by a phloem bleeding techniques. Planta. 12: 11–26.
Rodríguez-Navarro, A. and F. Rubio. 2006. High-affinity potassium and sodium transport systems in plants. J. Exp. Bot. 57(5): 1149–1160.
Rufty, T.W., J.E. Thomas., J.L. Remmler., W.H. Campbell., and R.J. Volk. 1986. lntracellular localization of nitrate reductase in roots. Plant Physiol. 82: 675-680.
Raven, J.A. 1985. regulation of pH and generation of osmolarity in vascular plants: A cost-benefit analysis in relation to efficiency of use of energy,nitrogen and water. New Phytol. 101: 25-77.
Robert, D.D., A. Joseph., and P.T. Irwin. 1984. Carbon fixation by Paphiopedilum insigne and Paphiopedilum parisii(Orchidaceae). Ann. Bot. 54: 583-586.
Robinson, D. and I.H.Rorison. 1983. A comparison of the responses of Lolium perenne L., Holcus lanatus L., and Deschampsia flexuosa (L.) Trin.to a localized supply of nitrogen. New Phytol. 94: 263-273.
Russell, R.S. 1977. Plani root systems: Their function and interaction with the. Soil. McGraw-Hill, London. 233-235.
Radin, J.W. 1975. Differential regulation of nitrate reductase induction in roots and shoots of cotton plants. Plant Physiol. 55: 178-182.
Rosen, H. 1957. A modified ninhydrin colorimetric analysis for amino acids. Arch. Biochem. Biophys. 67(1): 10-15.
Sheenhan, T.J. and M. Sheenhan. 1994. An Ilustrated survey of orchids genera. Timber Press Inc.,Portland. 421.
Shaner, D.L. and J.S. Boyer. 1976. Nitrate reductase activity in maize (Zea mays L.) leaves. Plant Physiol. 58: 499-504.
Takács, E. and L. Técsi. 1992. Effects of NO3-/NH4+ ratio on photosynthetic rate, nitrate reductase activity and chloroplast ultrastructure in three cultivars of red pepper(Capsicum annuum L.). J. Plant Physiol. 140: 298-305.
Troughton, A. 1977. Relationships between the roots and shoot system of grasses. In The belowground ecosystem: A synthesis of plant-associated Processes. Range Sci. Series. (26): 39-51.
Ullrich, W.R., J. Lazarova., C.I. Ullrich., F.G. Witt., and P.J. Aparicio. 1998. Nitrate uptake and extracellular alkalinization by the green alga hydrodictyon reticulatum in blue and red light. J. Exp. Bot. 49(324): 1157-1162.
Ullrich, W.R. 1992. Transport of ntrate and ammonium through plant membranes.in: Nitrogen metabolism of plants. Oxford university press. Oxford. 121-137.
Vaughn, K.C. and W.H. Campbell. 1988. lmmunogold localization of nitrate reductase in maize leaves. Plant Physiol. 88: 1354-1357.
Warren, C.R. 2009. Uptake of inorganic and amino acid nitrogen from soil by Eucalyptus regnans and Eucalyptus pauciflora seedlings. Tree Physiol. 29: 401–409.
Wood, R.M., J.W. Patrick., and C.E. Offler. 1994. The cellular pathway of short-distance transfer of photosynthase and potassium in the elongation stem of phaseolus vulgaris L.stem anatomy, solute transport and pool sizes. Ann. Bot. 73: 151-160.
Zankowski, P.M., D. Fraser., T.L. Rost., and T.L. Reynolds. 1987. The developmental anatomy of velamen and exodermis in aerial roots of Epidendrum Ibaguense. Lindleyana 2: 1-7.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top