跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/03 16:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳慈芳
研究生(外文):Tsz-Fang Wu
論文名稱:化學藥劑誘導‘台農十七號’鳳梨產生乙烯及對開花之影響
論文名稱(外文):Effect of Chemicals on Inducing Ethylene Production and the Flowering of ‘Tainung No. 17’ Pineapple
指導教授:林慧玲林慧玲引用關係
學位類別:碩士
校院名稱:國立中興大學
系所名稱:園藝學系所
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:75
中文關鍵詞:鳳梨催花乙烯電石葉圓片硫酸銅ACC
外文關鍵詞:pineappleforce floweringethylenecalcium carbideleaf discCuSO4ACC
相關次數:
  • 被引用被引用:1
  • 點閱點閱:439
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
台灣鳳梨生產上常使用電石水催花,但電石水之催花效果不穩定,因此本實驗欲釐清電石水中成分對催花效果之影響,以及找尋可能取代電石水之藥劑。因此將鳳梨成熟株以電石水、電石氣(乙炔氣)、乙烯、無電石氣之電石水處理,或先處理1-MCP後再處理電石氣,結果顯示電石水、電石氣及乙烯處理,皆可誘導開花,而植株經1-MCP或無電石氣之電石水處理後則未開花,顯示電石水中之乙炔是主要刺激開花之物質。催花後50天,大部分植株即將進入小花開放階段,開花株綠色部分之氮及鈣含量較未開花株多,而全可溶性糖/全氮比值則較未開花株小,澱粉及氮/鈣比則與未開花株無顯著差異。
以電石水上清液、無電石氣之電石水或電石水誘導葉圓片產生乙烯,結果顯示電石水上清液誘導乙烯產生量較電石水處理多,但無電石氣之電石水處理後乙烯產生量減少,顯示電石水中的沉澱物會影響乙炔誘導乙烯生成。
鳳梨D葉中白綠及淡綠色產生的乙烯量最多,而以此部分之葉圓片作化學藥劑及荷爾蒙測試誘發乙烯產生之能力。磷酸二氫鉀(KH2PO4)、0.1mM Kinetin、0.5 ppm IBA、磷酸一氫鉀(K2HPO4)、氯化鈣(CaCl2)及硝酸鈣(Ca(NO3)2)皆無法誘導乙烯產生。然而,硫酸銅(CuSO4)處理後明顯刺激葉圓片產生乙烯,於25℃下0.5mM CuSO4有最多乙烯產生。但短暫浸泡CuSO4溶液10分鐘可誘導更多乙烯產生,如6-12小時之乙烯釋放率約為25℃下0.5mM CuSO4持續培養之3.5倍。CuSO4能使乙烯產生主要是由於刺激ACC合成。結果也顯示益收處理葉圓片後可產生大量乙烯。
硫酸銅能明顯誘導乙烯產生,因此,實際施用於植株調查其催花能力。鳳梨植株以電石水、油脂包覆之電石粒、不同濃度(0.5、1及2mM)之氯化銅或硫酸銅以及益收進行催花處理,其中益收處理較有效,開花率為85%,電石水與油脂包覆電石粒開花率皆為21%,其餘處理皆未開花。葉片白色部分之氮含量隨催花後時間增加由1.45%下降至0.51%,而綠色部分則約維持於1-1.2%之間,但益收處理之綠色部分於催花後氮明顯上升。益收處理之葉片綠色部分可溶性糖含量於開花前較其他處理低,而澱粉含量則無明顯差異。
硫酸銅能誘導葉圓片大量乙烯產生,但在完整植株中卻非常少。催花失敗之原因可能是產生之乙烯量不足以誘導開花,或葉表面有蠟質結構阻擋其進入葉肉細胞,而導致無法開花。


In Taiwan, the force flower treatment of pineapple usually used calcium carbide (CaC2) solution, but it was unstable. For this reason, the object of this study was to clear the ingredients in CaC2 solution which affected flower induction and found chemicals that may be replaced CaC2 solution. Mature pineapple plants were treated with CaC2 solution, CaC2 gas (acetylene gas), ethylene gas, CaC2 solution without acetylene gas, or first treated with 1-MCP then CaC2 gas. Results showed that CaC2 solution, acetylene gas, and ethylene gas could induce plants to flower. Plants treated with 1-MCP or CaC2 solution without acetylene gas did not flower, suggesting that acetylene gas was the main ingredient in CaC2 solution which stimulated flowering. Most of the plants bloomed at 50 days after forced flowering. The nitrogen and calcium content in the green part of the leaves of flowering plants was higher than in non-flowering plants. And the ratios of total soluble sugar to total nitrogen in flowering plants were lower than in non-flowering plants. There were no significant differences in starch content and nitrogen/ calcium ratios between flowering and non-flowering plants.
Ethylene production in leaf discs was induced by treatments with CaC2 supernatant liquid, CaC2 solution without acetylene gas, or CaC2 solution on leaf discs. Results showed that CaC2 supernatant liquid could induce more ethylene production than CaC2 solution did, but ethylene production was decrease after treatment with CaC2 solution without acetylene gas, suggested that the precipitates in the CaC2 solution could affect acetylene-induced ethylene production.
The white-green and light green sections of D leaf in pineapple plants were found to produce the most ethylene. Leaf discs from these sections were examined for the ability to further produce ethylene by using chemicals and hormones. KH2PO4, 0.1mM kinetin, 0.5ppm IBA, K2HPO4, CaCl2, and Ca(NO3)2 could not induce leaf discs to produce more ethylene. However, there was obvious ethylene production by leaf discs after treatment with CuSO4, the highest ethylene production rate being from the concentration of 0.5mM CuSO4 at 25℃. But there was even more ethylene production when leaf discs were dipped in 5mM CuSO4 aqueous solution for 10 minutes. For example, the ethylene production rate for 5mM CuSO4 at 6-12 hr was 3.5 times higher than discs incubated in 0.5mM CuSO4. CuSO4 ability to produce ethylene may be stimulated by ACC synthase activity. Results also showed the leaf discs produced a large amount of ethylene after treatment with ethephon.
Leaf discs could produce ethylene after CuSO4 treatment, so CuSO4 applying to the plants then evaluated the capability of flower induction. Pineapple plants were treated with CaC2 solution, oil-coated CaC2, different concentrations of CaCl2 or CuSO4 (0.5, 1, and 2mM), and ethephon for forcing flowers. Among them, ethephon treatment was more efficienct: 85% in flowering rate. The flowering rate of CaC2 solution and oil-coated CaC2 was 21%. Other treatments did not force flowering. The nitrogen content in the white part of D leaf was decreased with the forced flowering time, from 1.45 to 0.51%; and the green part of the leaf was maintained between 1 to 1.2%; but the nitrogen content in the green part of the leaf was significantly increased after ethephon forced flowering treatment. The total soluble sugar in the green part of the leaf before flowering by ethephon treatment was lower than other treatments, but starch had no significant difference between treatments.
CuSO4 could induce considerable ethylene production from leaf discs but very little from whole plants. The reason for failure of flower induction may be due to the fact that the quantity of ethylene production was too low to induce flowering, or there was wax on the leaf surfaces which obstructed cupric ions from entering the leaf tissues and resulted in flowering failure.


中文摘要...................................................i
Summary...................................................ii
總目錄....................................................iv
表目錄.....................................................v
圖目錄....................................................vi
壹、前言...................................................1
貳、前人研究...............................................2
一、乙烯與鳳梨開花之關係...................................2
二、鳳梨人工催花...........................................2
三、抑制鳳梨自然開花.......................................5
四、影響鳳梨開花之因子.....................................6
五、其他誘導乙烯產生之物質.................................8
六、其他誘導果樹開花之物質................................10
參、材料與方法............................................12
一、化學藥劑及荷爾蒙誘發鳳梨乙烯合成之研究................12
二、乙烯及電石水對催花之影響..............................16
三、銅離子、電石及益收之催花效果..........................20
肆、結果..................................................22
一、化學藥劑及荷爾蒙誘發鳳梨乙烯合成之研究................22
二、乙烯及電石水對催花之影響..............................34
三、銅離子、電石及益收之催花效果..........................44
伍、討論..................................................54
一、探討電石水催花不穩定之原因及催花後50天植株之生理狀況..54
二、誘導鳳梨葉片乙烯產生之藥劑............................57
三、催花藥劑潛力評估......................................63
四、結語..................................................65
陸、參考文獻..............................................66
柒、附錄..................................................74


中央氣象局全球資訊網。2010。2009年10月至2010年3月南投日月潭之月平均溫度、最高溫、最低溫及濕度變化。
王茗慧。2006。‘帝王’番石榴無機養分週年變化果實後熟生理及貯藏之研究。國立中興大學園藝學研究所碩士論文。台灣:台中。pp.99。
行政院農業委員會。2008。97年農業統計年報。
行政院農業委員會農業試驗所。2007。台灣的鳳梨。遠足文化事業股份有限公司。台北。pp.173。
官青杉、徐信次。2005。鳳梨。台灣農家要覽農作篇(二)。財團法人豐年社。p.31-38。
邱金春。1991。植物生長調節對觀賞鳳梨催花效果之探討。中國園藝 37:168-177。
林慧玲。1998。番石榴果實後熟生理之研究。國立台灣大學園藝學研究所博士論文。台灣:台中。pp.255。
范俊傑。2007。撲滅松及磷酸二氫鉀對‘粉紅種’蓮霧開花之影響。國立中興大學園藝學研究所碩士論文。台灣:台中。pp.94。
徐守全。1996。芒果花芽分化、抽梢頻率、著果數及枝梢營養關係之研究。國立中興大學園藝學研究所碩士論文。台灣:台中。pp.85。
陳秀珠。1997。‘金煌’芒果果實生理劣變及採收後生理。國立中興大學園藝學研究所碩士論文。台灣:台中。pp.133。
張清勤。1978。鳳梨植株大小對電石和NAA催花處理的效果及果實品質影響之研究。中華農業研究 27:67-75。
張清勤。1999。催花藥劑對‘台農四號’鳳梨果實形質之影響。中國園藝 45:439-447。
黃季春。1971。鳳梨植株本身條件與催花處理效果關係之研究。中國園藝 17:28-35。
曾顯皓。2009。催花後不同發育階段低溫處理對‘台農十七號’鳳梨植株及果實發育之影響。國立中興大學園藝學研究所碩士論文。台灣:台中。pp.129。
賴文龍。2004。果樹營養診斷。台中區農情月刊 53。
盧美英、周歧佛、朱建華、黃景芬、朱建武、何全光、黃永敬、徐炯志、黃桂香。2004。氯酸鉀對龍眼分化若干生理指標影響的研究。中國農學通 20:177-181。
顏昌瑞、趙政男、張哲偉、曾珍奇。2001。化學藥劑對龍眼開花之影響。中國園藝 47:195-200。
小那霸 安優。2002。パイナップルの生理生態に関する研究。沖縄県農業試験場研究報告 第25号:30-48。
Abeles, F. B. 1967. Inhibition of flowering in Xanthium pensylvanicum Walln. by ethylene. Plant Physiol. 42:608-609.
Abeles, A. L. and F. B. Abeles. 1972. Biochemical pathway of stress-induced ethylene. Plant Physiol. 50: 496-498.
Abeles, F. B. 1992. Roles and physiological effects of ethylene in plant physiology: dormancy, growth, and development. pp. 120-181. In: Abeles, F. B., P. W. Morgan, and M. E. Saltveit (eds.). Ethylene in Plant Biology. Academic Press, San Diego.
Adams, D. O. and S. F. Yang. 1979. Ethylene biosynthesis: Identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proc. Natl. Acad. Sci. U.S.A. 76:170-174.
Amagasa, T. and H. Suge. 1987. The mode of flower-inhibiting action of ethylene in Pharbitis nil. Plant Cell Physiol. 28:1159-1161.
Apelbaum , A., A. C. Burgoon, J. D. Anderson, T. Solomos, and M. Lieberman. 1981. Some characteristics of the system converting 1-aminocyclopropane-l-carboxylic acid to ethylene. Plant Physiol. 67:80-84.
Arteca, R. N. and J. M. Arteca. 2007. Heavy-metal-induced ethylene production in Arabidopsis thaliana. J. Plant Physiol. 164:1480-1488.
Atkin, O. K. and M. G. Tjoelker. 2003. Thermal acclimation and the dynamic response of plant respiration to temperature. Trends Plant Sci. 8:343-351.
Avni, A., B. A. Bailey, A. K. Mattoo, and J. D. Anderson. 1994. Induction of ethylene biosynthesis in Nicotiana tabacum by a Trichoderma viride xylanase is correlated to the accumulation of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase transcripts. Plant Physiol. 106:1049-1055.
Banno, K., G.. C. Martin, and R. M. Carlson. 1993. The role of phosphorus as an abscission-inducing agent for olive leaves and fruit. J. Am. Soc. Hortic. Sci. 118:599-604.
Bartholomew, D. P. and R. A. Criley. 1983. Tropical fruit and beverage crops. pp. 1-11. In: Nickell, L. G. (ed.). Plant growth regulating chemicals, Vol 2. CRC Press, Boca Raton, FL.
Bartholomew, D. P. 1985. Ananas comosus. pp.450-454. In: Halevy, A. H. (ed.). Handbook of flowering, Vol 1. CRC Press, Boca Raton, FL.
Bartholomew, D. P. and E. Malézieux. 1994. Pineapple. pp.243-291. In: Schaffer, B. and P. C. Andersen (eds.). Handbook of environmental physiology of fruit crops, Vol. 2 Subtropical and tropical crops. CRC Press, Boca Raton, FL.
Biddle, E., D. G. S. Kerfoot, Y. H. Kho, and K. E. Russell. 1976. Kinetic studies of the thermal decomposition of 2-chloroethylphosphonic acid in aqueous solution. Plant Physiol. 58:700-702.
Blankenship, S. M. and J. M. Dole. 2003. 1-Methylcyclopropene: a review. Postharvest Biol. Technol. 28:1-25.
Burg, S. P. and E. A. Burg. 1967. Molecular requirements for the biological activity of ethylene. Plant Physiol. 42:144-152.
Burg, S. P. and E. A. Burg. 1966. Auxin-induced ethylene formation: Its relation to flowering in the pineapple. Science 152:1269.
Cheverry, J. L., M. O. Sy, J. Pouliqueen, and P. Marcellin. 1988. Regulation by CO2 of 1-aminocyclopropane-1-carboxylic acid conversion to ethylene in climacteric fruits. Physiol. Plant. 72:535-540.
Clark, H. E. and K. R. Kerns. 1942. Control of flowering with phytohormones. Science 95: 536-537.
Cockshull, K. E. and J. S. Horridge. 1978. 2-Chloroethylphosphonic acid flower initiation by Chrysanthemum morifolium Ramat. in short days and in long days. J. Hortic. Sci. 53:85-90.
Cooke, A. R. and D. I. Randall. 1968. 2-haloethanephosphonic acids as ethylene releasing agents for the induction of flowering in pineapples. Nature 218:974-975.
Cooper, W. C. and P. C. Reese. 1941. Induced flowering of pineapples under Florida conditions. Proc. Florida State Hort. Soc. 54:132-138.
Cunha, G. A. P. 2005. Applied aspects of pineapple flowering. Bragantia 64:499-516.
Cunha, G. A. P., D. H. R. C. Reinhardt, and J. T. A. Costa. 2005. Relationships among growth regulators and flowering, yield, leaf mass, slip production and harvesting of ‘Perola’ pineapple. Acta Hort. 666:149-160.
Dass, H. C., G. S. Randhawa, and S. P. Negi. 1975. Flowering in pineapple as influenced by ethephon and its combinations with urea and calcium carbonate. Sci. Hortic. 3:231-238.
Dass, H. C., G. S. Randhawa, H. P. Singh, and K. M. Ganapathy. 1976. Effect of pH and urea on the efficacy of ethephon for induction of flowering in pineapple. Sci. Hortic. 5:265-268.
De Proft, M. P., O. Mekers, L. Jacobs, and J. A. De Greef. 1986. Influence of light and flowering inducing chemicals on the quality of the Bromeliaceae inflorescence. Acta Hort. 181: 141-146.
Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28:350–356
Dukovski, D., R. Bernatzky, and S. Han. 2006. Flowering induction of Guzmania by ethylene. Sci. Hortic. 110:104-108.
Dupille, E. and L. Zacarías. 1996. Extraction and biochemical characterization of wound-induced ACC oxidase from citrus peel. Plant Sci. 114:53-60.
Eaks, I. L. 1978. Ripening, respiration, and ethylene production of ‘Hass’ avocado fruits at 20° to 40°C. J. Am. Soc. Hortic. Sci. 103:576-578.
Ennis, H. L. and M. Lubin. 1964. Cycloheximide: aspects of inhibition of protein synthesis in mammalian cells. Science 146:1474-1476.
Foster, K. R., D. M. Reid, and R. P. Pharis. 1992. Ethylene biosynthesis and ethephon metabolism and transport in barley. Crop Sci. 32:1345-1352.
Friend, D. J. C. and J. Lydon. 1979. Effect of day length on flowering, growth and CAM of pineapple (Ananas comosus L. Merr.). Bot. Gaz. 140:280-283.
Friend, D. J. C. 1981. Effect of night temperature on flowering and fruit size in
pineapple (Ananas comosus L. Merr.). Bot. Gaz. 142:188-190.
Fuchs, Y., A. K. Mattoo, E. Chalutz, and I. Rot. 1981. Biosynthesis of ethylene in higher plants: the metabolic site of inhibition by phosphate. Plant Cell Environ. 4:291-295.
Glennie, J. D. 1979. The effect of temperature on the floral induction of pineapples with ethephon. Aust. Hortic. Res. Newsl. 50:49-52.
Gowing, D. P. 1956. An hypothesis of the role of naphthaleneacetic acid in flower induction in the pineapple. Am. J. Bot. 43:411-418.
Hansen, H and K. Grossmann. 2000. Auxin-induced ethylene triggers abscisic acid biosynthesis and growth inhibition. Plant Physiol. 124: 1437-1448.
Hyodo, H., C. Hashimoto, S. Morozumi, W. Hu, and K. Tanaka. 1993. Characterization and induction of the activity of 1-aminocyclopropane-l- carboxylate oxidase in the wounded mesocarp tissue of Cucurbita maxima. Plant Cell Physiol. 34: 667-671.
Kende, H. 1989. Enzymes of ethylene biosynthesis. Plant Physiol. 91:1-4.
Kęsy, J., B. Maciejewska, M. Sowa, M. Szumilak, K. Kawałowski, M. Borzuchowska, and J. Kopcewicz. 2008. Ethylene and IAA interactions in the inhibition of photoperiodic flower induction of Pharbitis nil. Plant Growth Regul. 55:43-50.
Khatoon, S., F. Seidlova, and J. Krekule. 1973. Time-dependence of auxin and ethrel effects on flowering in Chenopodium rubrum L. Biol. Plant. 15:361-363.
Lau, O. L. and S. F. Yang. 1976. Stimulation of ethylene production in the mung bean hypocotyls by cupric ion, calcium ion, and kinetin. Plant Physiol. 57:88-92.
LaBrie, S. T., J. Q. Wilkinson, and N. M. Crawford. 1991. Effect of chlorate treatment on nitrate reductase and nitrite reductase gene expression in Arabidopsis thaliana. Plant Physiol. 97:873-879.
Lewcoek, H. K. 1937. The use of acetylene to induce flowering in pineapple plants.
Queensland Agric. Jour. 48:532-543.
Lizada, M. C. C. and S. F. Yang. 1979. A simple and sensitive assay for 1-aminocyclopropane-1-carboxylic acid. Anal. Biochem. 100:140-145.
Marschner, H. 1986. Mineral nutrition of higher plants. Academic Press, San Diego, California.
Maruthasalam, S., L. Y. Shiu, M. Loganathan, W. C. Lien, Y. L. Liu, C. M. Sun, C. W. Yu, S. H. Hung, Y. Ko, and C. H. Lin. 2010. Forced flowering of pineapple (Ananas comosus cv. Tainon 17) in response to cold stress, ethephon and calcium carbide with or without activated charcoal. Plant Growth Regul. 60:83-90.
Mattoo, A. K., R. A. Mehta, and J. E. Baker. 1992. Copper-induced ethylene biosynthesis in terrestrial (Nicotiana tabacum) and aquatic (Spirodela oligorrhiza) higher plants. Phytochemistry 31:405-409.
Matsumoto, T. K., T. Tsumura, and F. Zee. 2007. Exploring the mechanism of potassium chlorate-induced flowering in Dimocarpus longan. Acta Hort. 738:451-457.
Min, X. J. and D. P. Bartholomew. 1993. Effects of growth regulators on ethylene production and floral initiation of pineapple. Acta Hort. 334:101-112.
Min, X. J. and D. P. Bartholomew. 1996. Effect of plant growth regulators on ethylene production, 1-aminocyclopropane-1-carboxylic acid oxidase activity, and initiation of inflorescence development of pineapple. J. Plant Growth Regul. 15:121-128.
Moya-León, M. A. and P. John. 1994. Activity of 1-aminocyclopropane-1-carboxylate (ACC) oxidase (ethylene-forming enzyme) in the pulp and peel of ripening bananas. J. Hort. Sci. 69:243-250.
Olien, W. C. and M. J. Bukovac. 1978. The effect of temperature on rate of ethylene evolution from ethephon and from ethephon-treated leaves of sour cherry. J. Am. Soc. Hortic. Sci. 103:199-202.
Pennazio, S. and P. Roggero. 1989. Stimulation of ethylene production by exogenous spermidine in detached tobacco leaves in the light. Biol. Plant. 31:58-66.
Pennazio, S. and P. Roggero. 1990. Exogenous polyamines stimulate ethylene synthesis by soybean leaf tissues. Ann. Bot. 65:45-50.
Pennazio, S. and P. Roggero. 1991. Rapid ethylene production in soybean in response to the cupric ion. Ann. Bot. 67:247-249.
Potchanasin, P., K. Sringarm, P. Sruamsiri, and K. F. Bangerth. 2009. Floral induction (FI) in longan (Dimocarpus longan, Lour.) trees: part I. low temperature and potassium chlorate effects on FI and hormonal changes exerted in terminal buds and sub-apical tissue. Sci. Hortic. 122:288-294.
Purvis, A. C. and C. R. Barmore. 1981. Involvement of ethylene in chlorophyll degradation in peel of citrus fruits. Plant Physiol. 68:854-856.
Py, C. and A. Guyot. 1970. Controlled flowering of pineapple with ethrel, a new growth regulator. Fruits 25:253-262
Py, C., J. J. Lacoeuilhe, and C. Teisson. 1984. L’ananas: sa culture ses produits. G.P. Maisonneuve & Larose, Paris.
Riov, J. and S. F. Yang. 1982. Autoinhibition of ethylene production in citrus peel discs: suppression of 1-aminocyclopropane-1-carboxylic acid synthesis. Plant Physiol. 69:687-690.
Sakai, S. and H. Imaseki. 1971. Auxin-induced ethylene production by mungbean hypocotyl segments. Plant Cell Physiol. 12:349-359.
Scott, C. H. 1993. The effect of two plant growth regulators on the inhibition of precocious fruiting in pineapple. Acta Hort. 334:77-82.
Sisler, E. C. and C. Wood. 1988. Competition of unsaturated compounds with ethylene for binding and action in plants. Plant Growth Regul. 7:181-191.
Sobolewska, J. and H. Plich. 1986. The effect of inorganic phosphate on the ethylene production in tomato and apple fruits. Biol. Plant. 28:95-99.
Sringarm, K., P. Potchanasin, P. Sruamsiri, and K. F. Bangerth. 2009. Floral induction (FI) in longan (Dimocarpus longan, Lour.) trees-the possible participation of endogenous hormones II. Low temperature and potassium chlorate effects on hormone concentrations in and their export out of leaves. Sci. Hortic. 122:295-300.
Stassen, P. J. C., B. P. H. Janse van Vuuren, S. J. Davie. 1997. Preliminary studies on macro-element utilization by ‘Hass’ avocado trees. South African Avocado Growers’ Association Yearbook 20:68-73.
Suge, H. 1972. Inhibition of photoperiodic floral induction in Pharbitis nil by ethylene. Plant Cell Physiol. 13:1031-1038.
Suttle, J. C. 1986. Cytokinin-induced ethylene biosynthesis in nonsenescing cotton leaves. Plant Physiol. 82:930-935.
Trusov, Y. and J. R. Botella. 2006. Silencing of the ACC synthase gene ACACS2 causes delayed flowering in pineapple (Ananas comosus L. Merr.). J. Exp. Bot. 57:3953-3960.
Turnbull, C. G. N., E. R. Sinclair, K. L. Anderson, R. J. Nissen, A. J. Shorter, and T. E. Lanham. 1999. Routes of ethephon uptake in pineapple (Ananas comosus) and reasons for failure of flower induction. J. Plant Growth Regul. 18:145-152.
Van de Poel, B., J. Ceusters, and M. P. De Proft. 2009. Determination of pineapple (Ananas comosus, MD-2 hybrid cultivar) plant maturity, the efficiency of flowering induction agents and the use of activated carbon. Sci. Hortic. 120:58-63.
Van Overbeek, J. 1945. Flower formation in the pineapple plant as controlled by 2,4-D and naphthaleneacetic acid. Science 102:621.
Van Overbeek, J. 1946. Control of flower formation and fruit size in the pineapple. Bot. Gaz. 108:64-73.
Van Overbeek, J. and H. J. Cruzado. 1948a. Note on flowering formation in the pineapple induced by low night temperatures. Plant Physiol. 23:282-285.
Van Overbeek, J. and H. J. Cruzado. 1948b. Flower formation in the pineapple plant by geotropic stimulation. Am. J. Bot. 35:410-412.
Vieira, A., R. S. D. Gadelha, J. F. M. Maldonado, and A. C. Dossantos. 1983. Plant age and its influence in the flowering induction and yield of pineapple cultivar Smooth Cayenne. Pesqui. Agropecu. Bras. 18:33-35.
Wang, R. H., Y. M. Hsu, D. P. Bartholomew, S. Maruthasalam, and C. H. Lin. 2007. Delaying natural flowering in pineapple through foliar application of aviglycine, an inhibitor of ethylene biosynthesis. HortScience 42:1188-1191.
Warner, H. L. and A. C. Leopold. 1969. Ethylene evolution from 2-chloroethylphosphonic acid. Plant Physiol. 44:156-158.
Yang, S. F. 1969. Ethylene evolution from 2-chloroethylphosphonic acid. Plant
Physiol. 44:1203-1204.
Yang, S. F. and N. E. Hoffman. 1984. Ethylene biosynthesis and its regulation in higher plants. Annu. Rev. Plant Physiol. 35:155-189.
Yee, M. L., R. M. Sachs, and M. S. Reid. 1987. Changes in cotyledon mRNA during ethylene inhibition of floral induction in Pharbitis nil Strain Violet. Plant Physiol. 84:545-548.
Yu, Y. B., D. O. Adams, and S. F. Yang. 1980. Inhibition of ethylene production by 2,4-dinitrophenol and high temperature. Plant Physiol. 66:286-290.
Yu, Y. B. and S. F. Yang. 1980. Biosynthesis of wound ethylene. Plant Physiol. 66:281-285.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top