跳到主要內容

臺灣博碩士論文加值系統

(3.235.120.150) 您好!臺灣時間:2021/07/31 15:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳玟綺
研究生(外文):Wen-Chi Chen
論文名稱:硝酸態氮與銨態氮比例對菠菜及楊桃草酸濃度之影響
論文名稱(外文):Concentration of Oxalic Acid in Spinach (Spinacia oleracea L.) and Carambola (Averrhoa carambola L.) with Different Ratio of Nitrate and Ammonium
指導教授:林慧玲林慧玲引用關係
學位類別:碩士
校院名稱:國立中興大學
系所名稱:園藝學系所
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:84
中文關鍵詞:菠菜楊桃草酸硝酸態氮銨態氮
外文關鍵詞:spinachcarambolaoxalic acidnitrateammonium
相關次數:
  • 被引用被引用:2
  • 點閱點閱:330
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
菠菜被歸類為高草酸含量作物,楊桃果實中主要有機酸也是草酸。當人體中草酸濃度過高時,容易罹患高草酸尿症,同時也增加腎結石的風險。本試驗利用不同硝酸態氮與銨態氮比例之養液處理菠菜與楊桃,並觀察各處理草酸濃度之變化。菠菜植株處理養液後,草酸濃度以硝酸態與銨態氮比例為25:75之處理組最低,葉柄濃度高於葉片。硝酸態氮濃度以硝酸態氮與銨態氮比例為100:0之處理組濃度最高,且葉柄濃度高於葉片。菠菜植株草酸與酸態氮兩者呈現顯著正相關;與大量元素鉀、鈣及鎂同樣也呈顯著正相關。
同樣以不同硝酸態氮與銨態氮比例之養液處理楊桃植株,處理26週後的植株,平均枝條長度及葉片數以硝酸態與銨態氮比例為75:25之處理組最高;總氮及可滴定酸濃度以硝酸態與銨態氮比例為100:0及75:25兩處理組最高。處理後28週植株淨光合作用值以硝酸態與銨態氮比例為100:0及75:25兩處理組最高。葉片可滴定酸與草酸、蘋果酸及抗壞血酸間皆有顯著正相關。另外,葉片中的草酸與蘋果酸間也呈顯著正相關趨勢。而果實品質方面,果長、果重、總可溶性固形物、硬度、可滴定酸及有機酸皆以硝酸態與銨態氮比例為75:25之處理組最高。硝酸態氮與銨態氮比例為100:0及50:50兩處理草酸濃度較低。總氮濃度則是以硝酸態氮與銨態氮比例為75:25及0:100兩處理最高。果實中可滴定酸含量與草酸及總氮濃度間呈顯著正相關。草酸濃度與總氮及鉀濃度呈顯著正相關。而葉片與果實間的相關性比較,果實總可溶性固形物與葉片中硝酸態氮呈顯著負相關。果實草酸濃度則與葉片蘋果酸呈顯著正相關。
楊桃實生後代草酸濃度檢測,草酸濃度以A9濃度最高,C24最低。葉片中草酸與抗壞血酸呈顯著正相關,葉片草酸及抗壞血酸與果實可滴定酸間則無顯著相關。因此,無法以葉片做為果實草酸濃度的篩選指標。


Spinach (Spinacia oleracea L.) is classified in the highest levels of oxalates. Oxalic acid is also a major organic acid in Carambola (Averrhoa carambola L.) fruit. When oxalate concentration becomes high in the human body, it is a condition called hyperoxaluria, which increases the risk of kidney stones. This research used different ratio of nitrate (NO3-) and ammonium (NH4+) nutrient solution treatments on spinach and carambola. Each treatment was analyzed for oxalic acid concentration. Oxalic acid concentration was the lowest with 25:75 NO3-/NH4+, with oxalic acid higher in the petiole than in the blade. Nitrate concentration in spinach treated with 100:0 NO3-/NH4+ was the highest with nitrate in the petiole higher than in the blade. Oxalic acid and nitrate concentration in spinach showed a significant positive correlation. There was also a significant positive correlation between oxalic acid or nitrate and macro-element like potassium, calcium, and magnesium.
Different NO3-/NH4+ ratio nutrient solution were applied to pot-planted carambola. Twenty-six weeks after using 75:25 NO3-/NH4+ treatment, the average plant shoot length and leaf numbers were the highest. It was also found that with the 100:0 and 75:25 NO3-/NH4+, had the highest total nitrogen concentration and titrable acidity of carambola leaves. Twenty-eight weeks after using 100:0 and 75:25 NO3-/NH4+, had a higher net photosynthesis. Leaves showed a significant positive correlation between titrable acidity and oxalic, malic, and ascorbic acids. Additionally, oxalic acid and malic acid of leaves also showed a significant positive correlation.
On the other hand, the 75:25 NO3-/NH4+ was better than the others in regards to length, weight, total soluble solids, firmness, titrable acidity and organic acid content of fruit. Lower oxalic acid concentration was found when 100:0 and 50:50 NO3-/NH4+ were applied. When 75:25 and 0:100 NO3-/NH4+, was used total nitrogen concentration was higher than the other ratios. A significant positive correlation was found between titrable acidity of fruit, oxalic acid and total nitrogen concentration.
The concentration of oxalic acid in fruit had a significant positive correlation with both total nitrogen and potassium concentration in leaves. On the other hand, between leaf and fruit correlation, total soluble solids in fruit and nitrate concentration in leaf showed significant negative correlation. Between the concentration of oxalic acid in fruit and malic acid in leaves there showed a significant positive correlation.
In measuring the concentration of oxalic acid in carambola seedling, the concentration of oxalic acid was the highest in A9, was the lowest in C24. Oxalic acid and ascorbic acid had a significant positive correlation in leaves. However, both oxalic acid and ascorbic acid in leaves and titrable acidity in fruit had no significant correlation. Therefore, leaf analysis would be not on appropriate standard by which to select low-oxalic-acid fruit.


中文摘要...............................................i
Summary...............................................ii
圖目錄.................................................v
表目錄................................................vi
壹、 前言..........................................1
貳、 前人研究......................................2
一、 菠菜草酸之研究................................2
二、 植物體中草酸及其對人體之影響..................3
三、 楊桃草酸研究與人體之關係......................7
四、 植物對氮之吸收及同化與有機酸代謝..............8
參、 材料方法.....................................14
一、 硝酸態氮與銨態氮比例對菠菜草酸濃度之影響.....14
二、 硝酸態氮與銨態氮比例對楊桃草酸濃度之影響.....17
三、 楊桃實生後代果實草酸濃度調查.................21
肆、 結果.........................................22
一、 硝酸態氮與銨態氮比例對菠菜草酸濃度之影響.....22
二、 硝酸態氮與銨態氮比例對楊桃草酸濃度之影響.....34
三、 楊桃實生後代果實草酸濃度調查.................49
伍、 討論.........................................59
一、 硝酸態氮與銨態氮比例對菠菜草酸濃度之影響.....59
(一) 菠菜植株生育調查及氮濃度.....................59
(二) 菠菜植株草酸及營養元素濃度...................60
(三) 硝酸態氮與銨態氮對菠菜植株之影響.............61
二、 硝酸態氮與銨態氮比例對楊桃草酸濃度之影響.....62
(一) 楊桃植株生育情形及葉片與果實分析調查........62
(二) 氮肥處理後楊桃葉片及果實間相關性調查........63
三、 楊桃實生後代果實草酸含量調查.................65
(一) 實生後代葉片及果實草酸含量..................65
陸、參考文獻..........................................66
附錄..................................................84


陸、參考文獻
卓燕、鄭強卿、竇中江、姜繼元。2009。氮素營養代謝對果樹生長發育的影響。新疆農業科技 6:41-42。
林佳樺。2010。楊桃草酸含量之調查。國立中興大學園藝研究所碩士論文。臺灣:台中。
張承林、徐文彬。2005。根域容積對盆栽楊桃生長發育的影響。熱帶作物學報 26(3): 20-23。
張承晉、郭詩伶。2008。探討蔬菜製備與草酸含量之關係。臺灣營養學會雜誌 33(1): 39-44。
張英鵬、徐旭軍、林咸永、章永松、都韶亭、李剛。2006。氮素形態對菠菜可食部分硝酸鹽和草酸累積的影響。植物營養與肥料學報 12(2): 227-232。
徐新娟、李慶余、孫瑞、仲濤、宋曉暉、董彩霞、沈其榮。2009。不同形態氮素對櫻桃番茄果實發育和品質的影響。植物營養與肥料學報 15(6): 1425-1432。
趙建榮、秦改花。2008。不同氮形態配比對菠菜營養品質及抗氧化酶活性的影響。土壤通報 39(5): 1067-1070。
劉碧鵑、王子慶。2005。臺灣楊桃的外銷現況。農業世界雜誌 262: 60-65。
劉碧鵑、王德男、劉政道。2003。楊桃新品種臺農二號-正港。中華農業研究 52: 207-217。
劉碧鵑、謝鴻業、楊世華。2007。臺灣楊桃外銷潛力之探討。技術服務 69: 18-21。
劉碧鵑。2000。栽培品種與性狀。P. 195-199。楊桃綜合管理。楊秀珠編。行政院農委會藥物毒物試驗所印。臺灣 臺中。
劉慧瑛、黃淵輝。1991。臺灣水果維他命C含量之測定。中華農業研究 40: 280-290。
蔡政諭、黃榮慶、吳東霖、李瀛輝。2005。比較臺灣地區食品及飲料草酸的含量。臺灣泌尿醫誌 16(3): 93-99。
鍾仁鍵、游禎義。2004。歐盟蔬菜硝酸鹽類現量新規範。農政與農情 146: 59-62。
Addiscott, T. M. and N. Benjamin. 2004. Nitrate and human health. Soil and Use Management 20: 98-104.
Ahmed, A. K. and K. A. Johnson. 2000. The effect of the ammonium : nitrogen ratio, total nitrogen, salinity (NaCl) and calcium on the oxalate levels of Tetragonia tetragonioides Pallas. Kunz. J. Hort. Sci. Biotechnol. 75: 533-538.
Alderfasi, A. A., A. E. Moftah, and A. M. Aljuaed. 2010. Prospective study in influences of using bio-organic farming system on growth, nitrate, oxalate and ascorbic acid contents in spinach. World Appl Sci J 9(1): 49-54.
Aletor, V. A. and O. A. Adeogun. 1995. Nutrient and anti-nutrient components of some tropical leafy vegetables. Food Chem. 53: 375-379.
Ali, A., S. Sivakami, and N. Raghuram. 2007. Effect of nitrate, nitrite, ammonium, glutamate, glutamine and 2-oxoglutarate on the RNA levels and enzyme activities of nitrate reductase and nitrite reductase in rice. Physiol. Mol. Bilo. Plants 13: 17-25.
Aloni, B., L. Karni, I. Rylski, and Z. Zaidman. 1994. The effect of nitrogen fertilization and shading on the incidence of “color spots”in sweet peper (Capsicum annuum) fruit. J. Hortic. Sci. 69: 767-773.
Anjana, U. S., M. Iqbal, and Y. P. Abrol. 2006. Are nitrate concentrations in lefy vegetables within safe limits? Proceedings of the workshop on nitrogen in environment, industry and agriculture, 81-84. New Delhi, India.
Anjana, S. U. and M. Iqbal. 2009. Factors responsible for nitrate accumulation: a review. In: Sustainable Agriculture, ed. Lichtfouse, E. et al., 533-549. Springer Netherlands.
Arnott, H. J. and F. G. E. Pautard. 1970. Calcificaiton in plants. In: Biological calcification; cellular and molecular aspects, ed. Schraer, H., 375-446. New York: Appleton-Century-Crofts.
Assailly, A. 1954. Sur les rapports de l’oxalate de chaux et de l’amidon. Compt. Rend. Acad. Sci. Ser. D Paris 238: 1902-1904.
Barker, A. V., R. J. Volk, W. A. Jackson. 1966. Root environment acidity as a regulatory factor in ammonium assimilation by the bean plant. Plant Physiol. 41:1193-1199.
Bataillc, P. and A. Founder. 2001. Calcium supply in calcium lithiasis. Med. Nutr. 37:9 -12.
Bergman, M., L. Varsharsky, H. E. Gottilieb, and S. Grossman. 2001. The antioxidant activity of aqueous spinach extract: chemical identification of active fractions. Phytochmistry 58: 143-152
Bergquist, S. A. M., U. E. Gertsson, P. Knuthsen, and M. E. Olsson. 2005. Flavonoids in baby spinach (Spinacia oleracea L.): changes during plant growth and storage. J. Agric. Food Chem. 53: 9459-9464.
Bloom, A. J., R.M. Cladwell, J. Finazzo, R. L. Warner, and J. Weissbart. 1989. Oxygen and carbon dioxide fluxes from barley shoots dependent on nitrate assimilation. Plant Physiol. 91: 352-356.
Borchert, R. 1985. Calcium-induced patterns of calcium-oxalate crystals in isolated leaflets of Gleditsia triacanthos L. and Albizia julibrissin Durazz. Planta 165: 301-310.
Borchert, R. 1986. Calcium acetate induces calcium uptake and formation of calcium-oxalate crystals in isolated leafles of Gleditsia tracanthos L. Planta 168: 571-578.
Breteler, H. 1973. A comparison between ammonium and nitrate nutrition of young sugar beet plants grown in nutrient solutions at constant acidity. 2. Effect of light and carbohydrate supply. Neth. J. Agric. Sci. 21: 297-307.
Britto, D. T. and H. J. Kronzucker. 2002. NH4+ toxicity in higher plants: a critical review. J. Plant Physiol. 159: 567-584.
Çaliskan, M. 2000. The metabolism of oxalic acid. Turk. J. Zool. 24: 103-106.
Çaliskan, M. and A. C. Cuming. 1998. Special specificity of H2O2-generating oxalate oxidase gene expression during wheat embryo germination. Plant J. 15(2): 165-171.
Calmes, M. J. 1969. Contribution a l’etude matabolisme de l’caide oxalique chez la Vigne vierge (Parthenocissus tricuspidata Planchon). Compt. Rend. Acad. Sci. Ser. D. 269: 704-707.
Calmes, M. J. and J. Carles. 1970. Le repartition et l’evolution des cristaux d’oxalate de calcium dans les tissues de Vigne vierge au cours d’un cycle de vegetation. Bull. Soc. Bot. Fr. 117: 189-198.
Campbell, C. A. and K. E. Koch. 1989. Sugar/Acid composition and development of sweet and tart carambola fruit. J. Amer. Soc. Hort. Sci. 114(3): 455-457.
Campbell, W. H. 2002. Molecular control of nitrate reductase and other enzymes involved in nitrate assimilation. p.35-48. In: Photosynthetic nitrogen assimilation and associated carbon and respiratory metabolism. Foyer, C. H. and G. Noctor (eds.) Netherlands: Kluwer Academic.
Chaillou, S., J. F. Morot-Gaudry, L. Salsac, C. Lesaint, and E. Jolivet. 1986. Compared effects of NO3- or NH4+ growth and metabolism of French bean. Physiol. Veg. 24: 679-687.
Chaillous, S and T. Lamaze. 2001. Ammonical nutrition of plants. In: Nitrogen assimilation by plants, ed. Morot-Gaudry, J. F., 53-69. Science Publishers Inc., New Hampshire, USA.
Chang, J. M., S. J. Hwang, H. T. Kuo, J. C. Tsai, J. Y. Guh, H. C. Chen, J. H. Tsai, and Y. H. Lai. 2000. Fatal outcome after ingestion of star fruit (Averrhoa carambola) in uremic patients. Am. J. Kidney Dis. 35: 189-193.
Chen, B.M., Z. H. Wang, S. X. Li, G. X. Wang, H. X. Song, and X. N. Wang. 2004. Effects of nitrate supply on plant growth, nitrate accumulation, metabolic nitrate concentration and nitrate reductase activity in three leafy vegetables. Plant Sci. 167: 635-643.
Claussen, W. 2002. Growth, water use efficiency, and proline content of hydroponically grown tomato plants as affected by nitrogen source and nutrient conce3ntration. Plant and Soil 247(2): 199-209.
Collins, M. and J. E. McCoy. 1997. Chicory production, forage quality, and response to nitrogen fertilization. Agron. J. 89: 232-238.
Concon, J. M. 1988. Food toxicology─ principles and concepts. New York: Marcel Dekker.
Cramer, M. D., O. A. M. Lewis, and S. H. Lips. 1993. Inorganic carbon fixation and metabolism in maize roots as affected by nitrate and ammonium nutrition. Physiol. Plant 94: 425-432.
Crawford, N. M. and A. D. M. Glass. 1998. Molecular and physiological aspects of nitrate uptake in plants. Trends Plant Sci. 3: 389-395.
Cruz, C. A., F. M. Bio, M. D. Dominguez-Valdivia, P. M. Apraicio-Tejo, C. Lamsfus, and M. A. Martins-Loucao. 2006. How does glutamine synthetase activity determine plant tolerance to ammonium? Planta 223: 1068-1080.
Davidson, J. and J. A. LeClerc. 1935. The variation in the mineral content of vegetables. J. Nutr. 55-66.
de Graaf, M. C. C., R. Bobbink, P. J. M. Verbeek, J. G. M. Roelofs. 1998. Differential effects of ammonium and nitrate on three heathland species. Plant Ecol. 135: 185-196.
Dich, J., R. Jrvinen, P. Knekt, and P. L. Penttil. 1996. Dietary intakes of nitrate, nitrite and NDMA in the finish mobile clinic health examination survey. Food Add. Cont. 13: 541-552.
Dobbins J. W. and H. J. Binder. 1977. Importance of the colon in enteric hyperoxaluria. N. Engl. J. Med. 296: 298-301.
Dong, C. X., Q. R. Shen, and G. Wang. 2004. Tomato growth and organic aicd changes in response to partial replacement of NO3--N by NH4+.
Dorais, M., A. P. Papadoulos, and A. Gosselin. 2001. Greenhouse tomato fruit quality. Hortic. Rev. 26: 262-319.
Duncan, C., H. Dougall, P. Johnston, S. Green, R. Brogan, C. Leifert, L. Smith, M.
Edenharder, R. H. Krieg, V. Köttgen, and K. I. Platt. 2003. Inhibition of clastogenicity of benzo[a]pyrene and of its trans-7,8-dihydrodiol in mice in vivo by fruits, vegetables, and flavonoids. Mutat. Res. 537: 169-181.
Elia, A., P. Santamaria, F. Serio. 1998. Nitrogen nutrition, yield and quality of spinach. J. Sci. Food Agric. 76: 341-346.
Emsley, J. 1994. Rhubarb toxin found in blood. New Sci. 5: 17.
Ensminger, A. H., M. E. Ensminger, J. E. Konlande, and J. R. K. Robson. 1983. Food and nutrition encyclopedia, 2247-2256. Pegus Press, Clovis. Cal. U.S.A.
Eppendorfer, W. H. and S. W. Bille. 1996. Free and total amino acid composition of edible parts of beans, kale, spinach, cauliflower and potatoes as influenced by nitrogen fertilization and phosphorus and potassium deficiency. J. Sci. Food. Agric. 71: 449-458.
Evans, J. R. 1989. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia. 78: 9-19.
Fang, H. C., C. L. Chen, P. T. Lee, C. Y. Hsu, C. J. Tseng, P. J. Lu, S. L. Lai, H. M. Chung, and K. J. Chou. 2007. The role of oxalate in star fruit neurotoxicity of five-sixths nephrectomized rats. Food Chem. Toxicol. 45: 1764-1769.
Fangmeier A., A. Hadwiger-Fangmeier, L. van der Eerden, H. J. Jger. 1994. Effects of atmospheric ammonia on vegetation─a review. Environ. Pollut. 86: 43-82.
Fassett, D. W. 1973. Oxalates. In: Toxicants occurring naturally in foods, 2nd edn. 346-362. Washington: National Academy of Sciences.
Figdor, P. P. 1961. Uremia as a symptom of oxalic acid poisoning (in German with English abstract). Wien. Med. Wochenschr 111: 111-114.
Finnemann, J. and J. K. Schjoerring. 2002. Translocation of NH4+ in oilseed rape plants in relation to glutamine synthetase isogene expression and activity. Physio. Planta. 105: 469-477.
Forde, B. G. and P. J. Lea. 2007. Glutamate in plants: metabolism, regulation and signaling. J. Exp. Bot. 58: 2339-2358.
Foster, A. S. 1956. Plant idioblasts: remarkable examples of cell specialization. Protoplasm 26: 184-193.
Foy, C. D., R. L. Chaney, and M. C. White. 1978. The physiology of metal toxicity in plants. Annu. Rev. Plant Physiol. 29: 511-655.
Franceschi, V. R. and, H. T. Horner Jr. 1979. Use of Psychotria punctata callus in study of calcium oxalate crystal idioblast formation. Z. Pflanzenphysiol 92: 61-75.
Franceschi, V. R. and H. T. Horner Jr. 1980. Calcium oxalate crystals in plants. Bot. Rev. 46: 361-427.
Franceschi ,V. R. 1987. Oxalic acid metabolism and calcium oxalate formation in Lemna minor L. Plant Cell Environ. 10: 397-406.
Franceschi ,V. R. 1989. Calcium oxalate formation is a rapid and reversible process in Lemna minor L. Protoplasma 148: 130-139.
Franceschi, V. R. and F. A. Loewus. 1995. Oxalate biosynthesis and function in plants and fungi. In: Calcium oxalate in biological system, ed. Khan, S. R., 113-130. CRC Press, Boca Raton, FL.
Franceschi, V. R. and P. A. Nakata. 2005. Calcium oxalate in plants: formation and function. Annu. Rev. Plant Biol. 56: 41-71.
Frutos, P., I. J. Wright, F. J. Girádez, A. R. Mantecón, and G. Iason. 1998. Seasonal variation in nutrition and supplementation un sheep extensive system in north-central Spain. In:Extensification implications for beef cattle and sheep health and welfare., ed. Goddard, P., 17-23. Aberdeen, U.K.
Gangolli, S. D., P. A. Van den Brandt, V. J. Feron, C. Jan-Zowsky, J. H. Koeman, G. J. A. Speijers, B. Spiegilhalder, R. Walker, and J. S. Winshnok. 1994. Nitrate, nitrite, and N-nitroso compounds. Eur. J. Pharm. Environ. Toxicol. Pharmacol. 292: 1-38.
Gashaw, L. and L. M. Mugwira. 1981. Ammonium N and nitrate N effects on the growth of and mineral composition of triticale, wheat and rye. Agron. J. 73: 47-51.
Gastal, F. and G. Lemaire. 2002. N uptake and distribution in crops: an agronomical and ecophysiological perspective. J. Exp. Bot. 53: 789-799.
Gerendas, J., Z. Zhu, R. Bendixen, R. G. Ratcliffe, and B. Sattelmacher. 1997. Physiological and biochemical processes related to ammonium toxicity in higher plants. Z. Pflanzenernaehr Bodenkd 160: 239-251.
Giachetti, E., G. Pinzauti, R. Bonaccorsi, M. T. Vincenzini, and P. Vanni. 1987. Isocitrate lyase from higher plants. Phytochemistry 26(9): 2439-2446.
Gigon, A. and I. H. Rorison. 1972. The response of some ecologically distinct plant species to nitrate- and to ammonium-nitrogen. J. Ecol. 60: 93-102.
Gil, M. I., F. Ferreres, and F. A. Tomas-Barberan. 1999. Effect of postharvest storage and processing on the antioxidant constituents (flavonoids and vitamin C) of fresh-cut spinach. J. Agric. Food Chem 47: 2213-2217.
Givan, C. V. 1979. Metabolic detoxification of ammonia in tissues of higher platns. Phytochem. 18: 375-382.
Gontzea, I. and P. Sutzescu. 1968. Natural antinutritive substances in foodstuffs and forages. Basel: S. Karger.
Gülser, F. 2005. Effects of ammonium sulphate and urea on NO3- and NO2- accumulation, nutrient contents and yield criteria in spinach. Sci. Hortic. 106: 330-340.
Guo, S., Y. Zhou, Q, Shen, and F. Zhang. 2007. Effect of ammonium and nitrate nutrition on some physiological processes in higher plants – growth, photosynthesis, photorespiration, and water relations. Plnat Bio. 9(1): 21-29.
Hayaishi, O., H. Shimazono, M. Katagiri, and Y. Saito. 1956. Enzymatic formation of oxalate and acetate form oxaloacetate. J. Am. Chem. Soc. 78: 5126-5127.
Haynes, R. and K. M. Goh. 1978. Ammonium and nitrate nutrition of plant. Biol. Rev. 53: 465-510.
Hepler, P. K. and R. O. Wayne. 1985. Calcium and plant development. Ann. Rev. Plant Physiol. 36: 397-439.
Hill, S. A. 1997. Carbon metabolism in mitochondria. In: Plant metabolism, 2nd Edition, ed. Dennis, D. T. et al., 181-199. Longman, Singapore.
Hodgkinson A. 1977. Oxalic acid in biology and medicine. Academic Press, Longdon.
Holldampf, B. and A. V. Barker. 1993. Effects of ammonium on elemental nutrition of red spruce and indicator plants grown in acid soil. Comm. Soil Sci. Plant Anal. 24: 1945-1957.
Holmes, R. P. and M. Kennedy. 2000. Estimation of the oxalate content of foods and daily oxalate intake. Kidney Int. 57: 1662-1667.
Horner, H. T. and B. L. Wagner. 1980. The association of druse crystals with the developing stomium of capsicum annuum (Solanaceae) anthers. Amer. J. Bot. 67(9): 1347-1980.
Horner, H. T. and B. L. Wagner. 1995. Calcium oxalate formation in higher plants. In: Calcium oxalate in biological systems, ed. Khan, S. R., 53-72. CRC Press,
Horner, H. T., A. P. Kausch, and B. L. Wagner. 2000. Ascorbic acid: a precursor of oxalate in crystal idioblasts of Yucca torreyi in liquid root culture. Intl. J. Plant Sci. 161: 861-868.
Howard, L. R., N. Pandjaitan, T. Morelock, and M. I. Gil. 2002. Antioxidant capacity and phenolic content of spinach as affected by genetics and growing season. J. Agric. Food Chem. 50: 5891-5896.
Hughes, J. and R. W. Norman. 1992. Diet and calcium stones. Can. Med. Assoc. J. 146: 137-143.
Inal, A. and C. Tarakcioglu. 2001. Effects of nitrogen forms on growth, nitrate accumulation, membrane permeability, and nitrogen use efficiency of hydroponically grown bunch onion under boron defgiciency and toxicity. J. Plant Nitr. 24: 1521-1534.
Ismail, M. R. and K. M. Noor. 1996. Growth, water relations and physiological process of starfruit(Averrhoa carambola L.) plant under root growth restriction. Sci. Hortic. 66: 51-58.
Izmailov, S. F. 2004. Saturation and utilization of nitrate pools in pea and sugar beet leaves. Russ. J. Plant Physiol. 51: 189-193.
Jones Jr., J. B., B. Wolf, and H. A. Mills. 1991. Plant Analysis Handhook. Micro-Macro Publishing Inc.
Joy, K. W. 1964. Accumulation of oxalate in tissues of sugar-beet, and the effct of nitrogen supply. Ann. Bot. 28: 689-701.
Kaminishi, A. and N. Kita. 2006. Seasonal change of nitrate and oxalate concentration in relation to the growth rate of spinach cultivars. HortScience 41(7):1589-1595.
Kaneta, T., T. Bada, T. Ohtsubo, and F. Ikeda. 2004. Varietal differences in oxalic acid concentration and enzyme activity related to oxalic acid biosynthesis in carambola (Averrhoa carambola L.). Hort. Res. (Japan). 3(4): 415-419.
Karimi, S. H. and I. A. Ungar. 1986. Oxalate and inorganic concentrations in Atriplex triangularis W. organs in response to salinity, light level and aeration. Bot. Gaz. 147: 65-70.
Kawazu, Y., M. Okimura, and T. Ishii. 2003.Varietal and seasonal differences in oxalate content of spinach. Sci. Hort. 93:203-210.
Keates, S. A., N. Tarlyn, F. A. Loewus, and V. R. Franceschi. 2000. L-ascorbic acid and L-galactose are sources of oxalic acid and calcium oxalate in Pistia stratiotes. Phytochemistry 53: 433-440.
Kidmose, U., P. Knuthsen, M. Edelenbos, U. Justesen, and E. Hegelund. 2001. Carotenoids and flavonoids in organically grown spinach (Spinacia oleracea L.) genotypes after deep frozen storage. J. Sci. Food Agric. 81: 918-923.
Kirkby, E. A. 1968. Influence of ammonium and nitrate nutrition on the cation-anion balance and nitrogen and carbohydrate metabolism of white mustard plants grown in dilute nutrient solutions. Soil Sci. 105: 133-141.
Kirkby, E. A. and K. Mengel. 1967. Ionic balance in different tissues of tomato plant in relation to nitrate, urea or ammonium nitrogen. Plant Physiol. 42: 6-14.
Kochian, L.V. 1995. Cellular mechanisms of aluminum toxicity and resistance in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46: 237-260.
Konnerup, D. and H. Brix. 2010. Nitrogen nutrition of Canna indica: effect of ammonium versus nitrate on growth, biomass allocation, photosynthesis, nitrate reductase Aquat. Bot. 92: 142-148.
Korth. K. L., S. J. Doege, S. H. Park, F. L. Goggin, Q. Wang, S. K. Gomez, G. Liu, L. Jia, and P. A. Nakata. 2006. Medicago truncatula mutants demonstrate the role of plant calcium oxalate crystals as an effective defense against chewing insects. Plant Physiol. 141: 188-195.
Kostman, T. A. and V. R. Franceschi. 2000. Cell and calcium oxalate crystal growth is coordinated to achieve high capacity calcium regulation in plants. Protoplasma 214: 166-179.
Kostman, T. A. N. M. Tarlyn, F. A. Loewus, and V. R. Franceschi. 2001. Biosynthesis of L-ascorcic acid and conversion of carbons 1 and 2 of L-ascorbic acid to oxalic acid occurs within individual calcium oxalate crystal idioblasts. Plant Physiol. 125: 634-640.
Kostman, T. A. and J. R. Koscher. 2003. L-galactono-γ-lactone dehydrogenase is present in calcium oxalate crystal idioblasts of two plant species. Plant Physiol. Biochem. 41(3): 201-206.
Koyama, H. 1988. Purification and characterization of oxalate oxidase from Pseudomonas sp. OX-53. Agric. Biol. Chem. 52: 743-748.
Lane, B. G. 1994. Oxalate, germin, and the extracellular matrix of higher plants. FASEB J. 8: 294-301.
Libert, B. and V. R. Franceschi. 1987. Oxalate in crop plants. J. Agric. Food Chem. 35: 926-938.
Loewus, F. A. 1988. Ascorbic acid and its metabolic products. In: The biochemistry of platns, ed. Preiss, J., 85-107. New York: Academic Press.
Lomnitski, L., J. Foley, V. Ben-Shaul, S. Grossman, R. R. Maronpot, C. R. Moomaw. 2000. Effects of apocynin and matural antioxidant from spinach on inducible nitric oxide synthase and cyclooygenase-2 induction in lipopolysaccharide-induced hepatic injury in rat. Pharmacol. Toxicol. 87: 18-25.
Ma, J. F., S. Hiradate, and H. Matsumoto. 1998. High aluminum resistance in buckwheat. II. Oxalic acid detoxifies aluminum internally. Plant Physiol. 117: 753-759.
Ma. J. F, S. Hiradate, K. Nomoto, T. Iwashita, and H. Matsumoto. 1997. Internal detoxification mechanism of Al in hydrangea. Plant Physiol. 113: 1033-1039.
Ma. J. F., P. R. Ryan, and E. Delhaize. 2001. Aluminum tolerance in plants and the complexing role of organic acids. Trends Plant Sci. Vol.6: 273-278.
Magalhaes, J. R., G. E. Wilcox. 1983a. Tomato growth and mineral composition as influenced by nitrogen form and light intensity. J. Plant Nutr. 6: 847-862.
Magalhaes, J. R., G. E. Wilcox. 1983b. Tomato growth nutrient uptake patterns as influenced by nitrogenform and light intensity. J. Plant Nutr. 6: 941-956.
Magalhaes, J. R., G. E. Wilcox. 1984a. Ammonium toxicity development in tomato plants relative to nitrogen form and light intensity. J. Plant Nutr. 7: 1477-1496.
Magalhaes, J. R., G. E. Wilcox. 1984b. Growth, free amino acids, and mineral composition of tomato plants in relation to nitrogen form and growing media. J. Amer. Soc. Hort. Sci. 109: 406-411.
Magalhaes, J. R. and D. M. Huber. 1991. Response of ammonium assimilation enzymes to nitrogen form treatments in different plant species. J. Plant Nutr. 14(2): 175-185.
Marler, T. E., B. Schaffer, and J. H. Crane. 1994. Developmental light level affects growth, morphology, and leaf physiology of young carambola tress. J. Amer. Soc. Hort. Sci. 119: 711-718.
Martin, L. C., J. S.T. Caramori, P. Barretti, and V. A. Soares. 1993. Soluço intratável desencadeado por ingestão de carambola (Averrhoa carambola) em portadores de insuficiência renal crônica. J. Bras. Nefrol 15: 92-94.
Masclaux-Daubresse, C., F. Daniel-Vedele, J. Dechorgnat, and A. Suzuki. 2009. Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Ann. Bot. 105(7):1141-1157.
Massey, L.K., H. Roman-Smith, and R. A. L. Sutton. 1993. Effect of dietary oxalate and calcium on urinary oxalate and risk of formation of calcium oxalate kidney stones. J. Am. Diet Assoc. 93: 901-906.
Massonié, G. 1980. Breeding of a biotype of Myzus persicae sulzer on a synthetic medium. V-influence of oxalic and gentisic acids on the nutritive value of a synthetic medium. 34(1): 139-146.
Matsumoto, H., K. Tamura. 1981. Respiratory stress in cucumber roots treated with ammonium or nitrate nitrogen. Plant Soil 60: 195-204.
Maynard, D. N., A. V. Barker, P. L. Minotti, and H. H. Peck. 1976. Nitrate accumulation in vegetables. Adv. Agron. 28: 71-118.
McCall, D. and J. Willumsen. 1998. Effects of nitrate, ammonium and chloride application on the yield and nitrate content of soil-grown lettuce. J. Hortic. Sci. Biotech. 73: 698-703
Mengel, K. and E. A. Kirkby. 2001. Principles of plant nutrition, 367-369. Kluwer Academic, Boston. London.
Meyer, C. and M. Stitt. 2001. Nitrate reduction and signaling. In: Plant nitrogen, ed. Peter,J. et al., 37-51. INRA Editions, Versailles, France.
Micromedex® Healthcare Series: Document; Poisindex® Managements; Oxalic acid. Available from http:// proxy1. use. hcn. com.au/hcs/librarian/PFDefaultActionId/pf.PrintReady
Miller, A. J. and M. D. Cramer. 2004. Root nitrogen acquisition and assimilation. Plant and Soil 274: 1-36.
Miller, A. J. and S. J. Smith. 1996. Nitrate transport and compartmentation in cereal root cells. J. Exp. Bot. 47: 843-854.
Molano-Flores, B. 2001. Herbivory and calcium concentrations affect calcium oxalate crystal formation in leaves of Sida (Malvaceae). Ann. Bot. 88: 387-391.
Morelock, T.E. and J.C. Correll. 2008. Spinach, In: Prohens. ed.J. and F. Nuez. p.189- 218. Handbook of plant breeding. Volume 1. Vegetables 1, Asteraceae, Brassicaceae, Chenopodicaceae, and Cucurbitaceae. Springer, NewYork, NY.
Morton, J. F. 1987. Fruits of warm climates. In: Flair books, 125-128. Miami.
Mou, B. 2008. Evaluation of oxalate concentration in the U.S. spinach germplasm collection. HortScience 43: 1690-1693.
Muir, C. K., and C. K. Lam. 1980. Depressant action of Averrhoa carambola. Med. J. Malaysia. XXXIV: 279-280.
Myers, A. T. 1947. Seasonal changes in total and soluble oxalates in leaf blades and petioles of rhubarb. J. Agric. Res. 74: 33-47.
Nakason, H. Y. and R. E. Paull. 1998. Tropical fruits.
Nakata, P. A . 2003. Advances in our understanding of calcium oxalate crystal formation and function in plants. Plant Sci. 164: 901-909.
Nakata, P. A. and M. McConn. 2007. Isolated Medicago truncatula mutants with increased calcium oxalate crystal accumulation have decreased ascorbic acid levels. Plant Physiol. Biochem. 45: 216-220.
Nazaryuk, V. M., M. I. Klenova, F. R. Kalimullina. 2002. Ecoagrochemical approaches to the problem of nitrate pollution in agroecosystems. Russ. J. Ecol. 33: 392-297.
Neto, M. M., R. O. Carolino, N. P. Lopes, and N. Garcia-cairasco. 2008. Star fruit. In: Clinical Nephrotoxins, ed: DeBroe et al., 901-912. Springer U.S.
Neto, M.M., F. Robl, and J. C. Netto. 1998. Intoxication by star fruit (Averrhoa carambola) in six dialysis patients?(Preliminary report). Nephrol. Dial. Transpl. 13: 570-572.
Ninfali, P. and M. Bacchiocca. 2003. Polyphenols and antioxidant capacity of vegetables under fresh and frozen conditions. J. Agric. Food Chem. 51: 2222-2226.
Nonnicke, I. L. 1989. Vegetable production. 476-484. Van Nostrand Runhold.
Noonan, S. C. and G. P. Savage. 1999. Oxalate content of foods and its effect on humans. Asia Pac. J. Clin. Nutr. 8(1): 64-74.
Nyska, A., A. Suttle, S. Bakshi, L. Lomnitski, S. Grossman, M. Bergman. 2003. Slowing tumorigenic progression in TRAMP mice and prostatic carcinoma cell lines using natural antioxidant from spinach, NAO: a comparative study of three antioxidants. Toxicol. Pathol. 31: 39-51.
Obzansky, D. M. and K. E. Richardson. 1983. Quantification of urinary oxalate with oxalate oxidase from beet stems. Clin. Chem. 29: 1815-1819.
Oke, O.L. 1969. Oxalic acid and plants and in nutrition. World Rev. Nutr. Diet. 10: 262-303.
Palaniswaniy, U.R., B.B. Bible., and R.J. McAvoy. 2004. Oxalic acid concentrations in purslane (Portulaca oleracear L.) is altered by the stage of harvest and the nitrate to ammonium ratios in hydroponics. Sci. Hort. 102: 267 275.
Pandjaitan, N., L. R. Howard, T. Morelock, and M. I. Gil. 2005. Antioxidant capacity and phenolic content of spinach as affected by genetics and maturation. J. Agric. Food Chem. 53: 8618-8623.
Pathak, R. R., A. Ahmad, S. Lochab, and N. Raghuram. 2008. Molecular physiology of plant nitrogen use efficiency and biotechnological options for its enhancement. Curr. Sci. 94: 1394-1403.
Pearson, J. and G. R. Stewart. 1993. The deposition of atmospheric ammonia and its effects on plants. New Phytol. 125: 283-305.
Pierce, E. C. and C. D. Appliman. 1943. Role of ether soluble organic acids in the cation-anion balance in plants. Plant Physiol. 18: 224-238.
Prior, R. L. 2003. Spinach as a source of antioxidant phytochemicals with potential gealth effects. National Spinach corference 20-21 November 2003. Fayetteville, AR. USA Abst. p3-4.
Ragab, S. M. 1980. Water uptake and trans-potential in sunflower roots as influenced by ammonium ions. J. Agric. Sci. 94: 145-150.
Raghuram, N. and S. K. Sopory. 1999. Role of nitrate, nitrite, and ammonium in the phytochrome regulation of nitrate reductase gene expression in maize. Biochem. Mol. Biol. Int. 47: 239-249.
Raven, J. A. and F. A. Smith. 1976. Nitrogen assimilation and transport in vascular land plants in relation to intracellular pH regulation. New Phytol 76: 415-431.
Reinink, K., R. Groenwold, and A. Bootsma. 1987. Genotypical differences in nitrate content in Lactuca sativa L. and related species and correlation with dry matter content. Euphytica 36: 11-18.
Ren, H., H. Endo, and T. Hayashi. 2001. Antioxidative and antimutagenic activities and polyphenol content of pesticide-free and organically cultivated green vegetables using water-soluble chitosan as soil modifier and leaf surface spray. J. Sci. Food Agric. 81: 1426-1432.
Richardson, K. E. and N. E. Tolbert. 1961. Oxidation of glyoxylic acid to oxalic acid by glycolic acid oxidase. J. Biol. Chem. 236: 1280-1284.
Robertson, W. G. and H. Hughes. 1993. Importance of mild hyperoxaluria in the pathogenesis of urolithiasis: New evidence from studies in the Arabian peninsula. Scanning Microsc. 7: 391-402.
Roosta, H. R. and J. K. Schjoerring. 2008. Effects of nitrate and potassium on ammonium toxicity in cucumber plants. J. Plant Nut. 31: 1270-1284.
Rosen, H. 1957. A modified ninhydrin colorimetric analysis for amino acids. Arch. Biochem. Biophys. 67: 10-15.
Roth, D. A. and K. E. Breitenfield. 1977. Vitamin C and oxalate stones. J. Am. Med. Ass. 237, 768.
Ryan, P. R., E. Delhaize, D. L. Jones. 2001. Function and mechanism of organic anion exudation from plant roots. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52: 527-560.
Salsac, L., S. Chaillou, J. F. Morot-Gaudry, C. Lesaint, E. Jolivet. 1987. Nitrate and ammonium nutrition in plants. Plant Physiol. Biochem. 25: 805-812.
Salapetch, S., D. W. Turner, and B. Dell. 1990. The flowering of carambola (Averrhoa carambola L.) is more strongly influenced by cultivar and water stress than by diurnal temperature variation and photoperiod. Sci. Hortic. 43: 88-94.
Santamaria, P. 2006.Nitrate in vegetables: toxicity, content, intake and EC regulation. J. Sci. Food. Agric. 86: 10-17.
Santamaria, P., A. Elia, A. Parente, and F. Serio. 1998a. Nitrate and ammonium nutrition in chicory and rocket salad plants. J. Plant Nutr. 21(9):1779-1789.
Santamaria, P., A. Elia, A. Parente, and F. Serio. 1998b. Fertilization strategies for lowering nitrate accumulation in leafy vegetables: chicory and rocket salad case. J. Plant Nutr. 21 (9): 1791-1803.
Santamaria, P., A. Elia, F. Sero, and E. Todaro. 1999. A survey of nitrate and oxalate content in fresh vegetables. J. Sci. Food Agric. 79: 1882-1888.
Santamaria, P., A. Elia, M. Gonnella, A. Parente., and F. Serio. 2001. Ways of reducing rocker salad nitrate content. Acta Hortic. 548: 529-537.
Savage, G. P., L. Vanhanen, S. M. Mason, and A. B. Ross. 2000. Effect of cooking on the soluble and insoluble oxalate content of some New Zealand foods. J. Food Compost. Anal. 13: 201-206.
Scheible, W. R., A. Gonzalez-Fontes, M. Lauerer, B. Muller-Rober, M. Caboche, and M. Stitt. Nitrate acts as a signal to induce organic acid metabolism and repress starch metabolism on tobacco. Plant Cell 9: 783-798.
Schnek, M. and J. Wehrmann. 1979. The influence of ammonia in nutrient solution on growth and metabolism of cucumber plants. Plant Soil 52: 403-414.
Schortemeyer, M., P. Stamp, and B. Feil. 1997.Ammonium tolerance and carbohydrate status in maize cultivars. Ann. Bot. 79: 25-30.
Schubert, S. and F. Yan. 1997. Nitrate and ammonium nutrition of plants: Effects on acid/base balance and adaptation of root cell plasmalemma H+ ATPase. Z Pflanzenernaehr. Bodenk. 160: 275-281.
Seal, S. N. and S. P. Sen. 1970. The photosynthetic production of oxalic acid in Oxalis corniculata. Plant Cell Physiol. 11: 119-128.
Serna, M. D., R. Borras, F. Legaz, and E. Primo-Millo. 1992. The influence of nitrogen concentration and ammonium/nitrate ratio on N-uptake, mineral composition and yield of citrus. Plant and soil 147: 13-23.
Sharma, S., S. Vaidyanathan, R. Nath, and S. K. Thind. 1991. Advances in pathophysiology of calcium oxalate stone desease. Ind. J. Urol. 8: 25-37.
Sharples, R. O. 1980. The influence of orchard nutrietion on the storage quality of apples and pears in the United Kingdom. In: Mineral nutrition of fruit trees, ed. Atkinson, D. et al., 17-28. Butterworths, Boston, MA.
Shelp, B. J. and D. C. Taylor. 1990. Carbon and nitrogen partitioning in young nodulated pea wild type and nitrate reductase deficient mutant plants exposed to NO3- and NH4+. Can. J. Bot. 69: 1780-1786.
Siddiqi, M. Y., A. D. M. Glass, and T. J. Ruth. 1991. Studies of the uptake of nitrate in barely: Ⅲ Compartmentation of NO3-. J. Exp. Bot. 42: 1455-1463.
Sisson, V. A., T. W. Rufty, and R. E. Williamson. 1991. Nitrogen-use efficiency among flue-cured tobacco genotypes. Crop Sci. 31: 1615-1620.
Srivastava, S. K. and P. S. Krishnan. 1959. Oxalate content of plant tissues. J. Sci. Industr. Res. 18: 146-148.
Stagnari, F., V. D. Bitetto, and M. Pisante. 2007. Effect of N fertilizers and rates on yield, safety and nutrients in processing spinach genotypes. Sci. Hortic. 114: 225-233.
Stutz, R. E. and R. H. Burris. 1951. Photosynthesis and metabolism of organic acids in higher plants. Plant Physiol. 26: 226-243.
Tabatabaei, S. J., M. Yusefi, and J. Hajiloo. 2008. Effects of shading and NO3-:NH4+ ratio on the yield, quality and N metabolism in strawberry. Sci. Hort. 116: 264-272.
Takebe, M., T. Ishihara, K. Ishii, and T. Yonetama. 1995b. Effect of nitrogen forms and Ca/K ratio in the culture solution on the contents of nitrate, ascorbic acid and oxalic acid in spinach (Spinacia oleracea L.) and komatsuna (Brassica campestris L.). Jpn. J. Soil Sci. Plant Nutr. 66: 535-543.
Takebe, M., T. Ishihara, K. Matsuno, J. Fujimoto, and T. Yonetama. 1995a. Effect of nitrogen application on the contents of sugars, ascorbic acid, nitrate and oxalic acid in spinach (Spinacia oleracea L.) and komatsuna (Brassica campestris L.). Jpn. J. Soil Sci. Plant Nutr. 66: 238-246.
Tanaka, F., T. H. Kim, and T. Yoneyama. 2001. Relationship between oxalate synthesis and nitrate reduction in spinach (Spinacia oleracea L.) plants tracing by 13C and 15N. p.302-303 In: Plant nutrition: Food security and sustainability of agro-ecosystems through basic and applied research. Holst, W.J. et al. (eds.).
Tavant, H. 1967. Fixation de 14CO2 et absorption de glucose-U-14C par des feuilles de Begonia semperflorens Link et otto. Etude des conditions de la genese de l’acide oxalique. Physiol. Veg. 5: 57-69.
Taylor, G. J. 1991. Current views of the aluminum stress response; the physiological basis of tolerance. Curr. Top. Plant Biochem. Physiol. 10: 57-93.
Tillman-Sutela, E. and A. Kauppi. 1999. Calcium oxalate crystals in themature seeds of Norway spruce, Picea abies L. Karst. Trees 13: 131-137.
Tomala, K. 1997. Orchard factor affecting nutreient content and fruit quality. Acta Hort. 448: 257-264.
Torres, I. E. and G. E. Wilcox. 1974. Effect of nitrogen form on growth and composition of tomato and pea tissue. J. Am. Soc. Hort. Sci. 99: 171-174.
Urrestarazu, M., A. Postigo, M. Salas., A. Sanchez, and G. Carrasco. 1998. Nitrate accumulation reduction using chloride in the nutrient solution on lettuce growing by NFT in semiarid climate conditions. J. Plant Nutr. 21: 1705-1714.
Van der Boon, J., J. W. Steenhuizen, and E. G. Steingrover. 1990. Growth and nitrate concentration of lettuce as affected by total nitrogen and chloride concentration NH4+/NO3- ratio and temperature of the re-circulating nutrient solution. J. Hortic. Sci. 65(3): 309-321.
Van der Eerden, L. 1982. Toxicity of ammonia to plants. Agri. Environ. 7: 223-235.
Vines, H. M. and R. T. Wedding. 1960. Some effects of ammonia on plant metabolism and a possible mechanism for ammonia toxicity. Plant Physiol. 35: 820-825.
Volk, G. M., V. J. Lynch-Holm, T. A. Kostman, L. J. Goss, and V. R. Franceschi. 2002. The role of durse and raphide calcium oxalate crystals in tissue calcium regulation in Pistia stratiotes leaves. Plant Biol. 4: 34-45.
Wagner, G. J. 1981. Vacuolar deposition of ascorbate-derived oxalic acid in barley. Plant Physiol. 67: 591-593.
Walch-Liu, P., G. Neumann, F. Bangerth, and C. Engels. 2000. Rapid effects of nitrogen form on leaf morphogenesis in tobacco. J. Exp. Bot. 51: 227-237.
Wang, J., Y. Zhou, C. Dong, Q. Shen, and R. Putheti. 2009. Effects of NH4+-N/ NO3+-N ratios on growth, nitrate uptake and organic acid levels of spinach (Spinacia oleracea L.). Afr. J. Biotechnol. 8(15): 3597-3602.
Wang, X., F. E. Below. 1996. Cytokinins in enhanced growth and tillering of wheat induced by mixed nitrogen source. Crop Sci. 36: 121-126.
Watanabe, Y., F. Uchiyama, and K. Yoshida. 1994. Compositional changes in spinach (Spinacia oleracea L.) grown in the summer and the fall. J. Jap. Soc. Hort. Sci. 62: 889-895.
Webb, M. A. 1999. Cell-mediated crystallization of calcium oxalate in plants. Plant Cell 11: 751-761.
Weir, B. L., K. N. Paulson, and O. A. Lorenz. 1972. The effect of ammoniacal nitrogen on lettuce (Lactuca sativa) and radish (Raphanus sativus) plants. Soil Sci. Soc. Am. Proc. 36: 462-465.
Wenkam, N. S. 1990. Foods of Hawaii and the pacific basin. Fruits and fruit products, raw, processed, and prepared. Vol. 4 Composition. Research Extension Series 110. Hawaii Institute of Tropical Agriculture and Human resources, Honolulu, Hawaii.
Wiesler, F. and W. J. Horst. 1994. Root growth and nitrate utilization of maize cultivars under field conditions. Plant Soil 163: 267-277.
Williams, H. E. and T. R. Wandzilak. 1989. Oxalate synthesis transport and the hyperoxaluric syndromes. J. Urol. 141: 742-747.
Woolhouse, H. W. and K. Hardwick. 1966. The growth of tomato seedlings in relation to the form of the nitrogen supply. New Phytol. 65: 518-526.
Yang, Y. Y., J. Y. Jung, W. Y. Song, H. S. Suh, and Y. Lee. 2000. Identification of rice varieties with high tolerance or sensitivity to lead and characterization of the mechanism tolerance. Plant Physiol. 124: 1019-1026.
Yoshihara, T., K. Sogawa, M. D. Pathak, B. O. Juliano, and S. Sakamura. 1980. Oxalic acid as a sucking inhibitor of the brown planthopper in rice (Delphacidae, Homoptera). Entomol. Exp. Appl. 27: 149.
Zhang, C. L., Z. M. Gao, Y. D. Zhao, and W. M. Tang. 1990.The effects of different nitrogen forms and their concentration combinations on the growth and quality of spinach. J. Nanjing. Agric. Univ. 13: 70-74.
Zhang, Y. P., X. J. Xu, X. Y. Lin. Y. S. Zhang, L. S. Zhang, and T. T. Chen. 2004. Influence of different nitrogen levels on biomass, nitrate and oxalate accumulation in spinach (in Chinese with English abstract). Plant Nutr. and Ferti. Sci. 5: 494-498.
Zhang, Y., X. Lin, Y. Zhang, S. J. Zheng., and S. Du. 2005. Effects of nitrogen levels and nitrate/ammonium ratios on oxalate concentrations of different forms in edible parts of spinach. J. Plant Nutr. 28: 2011-2025.
Zhou, Z. Y., M. J. Wang, and J. S. Wang. 2000. Nitrate and nitrite contamination in vegetables in China. Food Rev. Int. 16: 61-76.
Zindler-Frank, E. 1976. Oxalate biosynthesis in relation to photosynthetic pathways and plant productivity: a survey. Z. Pflanzenphysiol. 80: 1-13.
Zindler-Frank, E. 1991. Calcium oxalate crystal formation and growth in two legume species as altered by strontium. Bot. Acta 104: 229-232.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top