跳到主要內容

臺灣博碩士論文加值系統

(3.236.23.193) 您好!臺灣時間:2021/07/26 07:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:朱祥雲
研究生(外文):Shiang-Yun Ju
論文名稱:兩輪自平衡機器人之智慧型運動控制
論文名稱(外文):Intelligent Motion Control of a Self–Balancing Two-Wheeled Mobile Robot
指導教授:蔡清池
指導教授(外文):Ching-Chih Tsai
學位類別:碩士
校院名稱:國立中興大學
系所名稱:電機工程學系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:86
中文關鍵詞:兩輪自平衡倒逆步控制順滑控制糢糊基底網路
外文關鍵詞:two-wheeled self-balancingbackstepping controlsliding-mode controlfuzzy basis function networks
相關次數:
  • 被引用被引用:0
  • 點閱點閱:241
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文的目的是研究兩輪自平衡自動服務機器人的智慧型運動控制。本文首先以具精確參數之動態數學模型為基礎的情況下,提出兩種倒逆步滑動控制法則,達成速度追蹤與轉向控制,進而完成軌跡追蹤與點對點姿態穩定之功能。接著考慮質量與其他參數的變動情況下,推導兩種結合模糊基底函數的智慧型運動控制策略,用以實現機器人之上述兩項運動控制功能。電腦模擬和實驗結果顯示本文所提的運動控制法則,在軌跡追蹤與點對點姿態穩定之運動性能表現,具有滿意的控制功能。

This thesis presents techniques for intelligent motion control of a two-wheeled self-balancing mobile robot. Based on the dynamic mathematical modeling with exact parameters, two backstepping sliding-mode controllers are designed to achieve desired speed tracking and yaw rate control, in order to accomplish out trajectory tracking and stabilization. In the presence of mass and parameter variations, two intelligent motion controllers using fuzzy basis function networks (FBFN) are proposed to achieve trajectory tracking and stabilization. Simulations and experimental results indicate that the proposed motion controllers are capable of providing satisfactory control performance for trajectory tracking and stabilization.

誌 謝 辭 i
中文摘要 ii
Abstract iii
Contents iv
List of Figures vii
List of Tables xii
Nomenclature xiii
List of Acronyms xiv
Chapter 1 Introduction 1
1.1 Introduction 1
1.2 Literature Review 4
1.3 Motivation and Objectives 5
1.4 Main Contributions 5
1.5 Thesis Organization 6
Chapter 2 System Structure and Control Architecture 7
2.1 Introduction 7
2.2 Overall System Structure and Key Components 7
2.2.1 Motor Drive 10
2.2.2 Motor 12
2.2.3 Right angle Gearboxes 13
2.2.4 Power Supply Module and Two Wheels 14
2.2.5 Tilt Sensor 14
2.2.6 Gyro Sensor 16
2.2.7 Rotary Encoder 19
2.2.8 Battery Energy Monitor 21
2.2.9 Digital Signal Controller (DSC) 21
2.2.10 Signal Flow of the Overall Control System 26
2.3 Motion Control System 27
2.4 Concluding Remarks 28
Chapter 3 Backstepping Sliding-Mode Motion Control 29
3.1 Introduction 29
3.2 Modeling of the Mobile Platform: Revisited 29
3.3 Torque-To-Speed Conversion 33
3.4 Odometry 34
3.5 Trajectory Tracking 35
3.5.1 Kinematic Level 36
3.5.2 Sliding-Mode Yaw Rate Control 38
3.5.3 Aggregate Hierarchical Sliding-Mode Speed Control 39
3.6 Stabilization 41
3.7 Simulations and Discussion 43
3.7.1 Simulation of Trajectory Tracking 44
3.7.2 Simulation of Stabilization 48
3.8 Experimental Results and Discussion 53
3.8.1 Experimental Results of Trajectory Tracking 54
3.8.2 Experimental Results of Stabilization 56
3.9 Concluding Remarks 58
Chapter 4 Intelligent Adaptive Motion Control Using Fuzzy Basis Function Networks 59
4.1 Introduction 59
4.2 Brief Review of FBFN 59
4.3 Intelligent Adaptive Sliding-Mode Posture and Speed Control Controllers Design Using FBFN 62
4.4 Intelligent Adaptive Sliding-Mode Yaw Rate Control Controllers Design Using FBFN 65
4.5 Simulations and Discussion 68
4.5.1 Simulation of Trajectory Tracking Using FBFN 69
4.5.2 Simulation of Stabilization using FBFN 73
4.6 Concluding Remarks 80
Chapter 5 Conclusions and Future Work 81
5.1 Conclusions 81
5.2 Future Work 82
References 84


[1] D. Voth, “Segway to the future,” Intelligent Systems, IEEE [see also IEEE Intelligent Systems and Their Applications] vol.20, no.3, pp.5 – 8, May-June 2005.
[2] Y.Hosoda, S. Egawa, J. Tamamoto, K. Yamamoto, R.Nakamura and M.Togami “Basic design of human-symbiotic robot EMIEW,” in Pro. IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, pp.5079-5084, Oct. 9 - 15, 2006.
[3] S.C. Lin, System design, modeling and control of self-balancing human transportation vehicles, Ph.D Dissertation, Department of Electrical Engineering, National Chung Hsing University, Taichung, Taiwan, July 2008.
[4] M. Sasaki, N. Yanagihara, O. Matsumoto, and K. Komoriya, “Steering control of the personal riding-type wheeled mobile platform (PMP),” in Proc. 2005 IEEE International Conference on Intelligent Robots and Systems, pp.1697-1702, 2005.
[5] F. Grasser, A.D’Arrigo, and S. Colombi, “JOE: A Mobile, Inverted Pendulum,” IEEE Trans. Industrial Electronics, vol.49, no.1, pp.107-114, February 2002.
[6] K. Pathak, J. Franch, and S. K. Agrawal, “Velocity and position control of a wheeled inverted pendulum by partial feedback linearization,” IEEE Transactions on Robotics, vol.21, no.3, pp.505-513, June 2005.
[7] Y.-S. Ha and S. Yuta, “Trajectory tracking control for navigation of the inverse pendulum type self-contained mobile robot,” Robotics and Autonomous Systems, vol.17, pp. 65-80, 1996.
[8] C. C. Tsai, C. K. Chan and S. H. Wang , “Nonlinear Slide-Mode Motion Control of a Self-balancing Autonomous Service Robot,” Proc. of 2009 International Conference on Service and Interactive Robots, Taipei, Taiwan, August 6-7, 2009.
[9] A. Salerno, and J. Angeles, “The control of semi-autonomous two-wheeled robots undergoing large payload-variations,” in Proc. ICRA’04, vol.2, pp.1740-1745, Apr 26-May 1, 2004.
[10] C. C. Tsai, C. K. Chan, and Y. H. Fan, “Planned Navigation of a self-balancing autonomous service robot,” International Conference on Advanced Robots and its Social Impacts, Taipei, Taiwan, Aug. 2008.
[11] J.C. Lo and Y. H. Kuo, “Decoupled fuzzy sliding-mode control, ”IEEE Transactions on Fuzzy Systems, vol. 6, no. 3, pp. 426-435. Aug. 1998.
[12] C. M. Lin and Y.J. Mon, “Decoupling Control by hierarchical fuzzy sliding-mode controller,” IEEE Transactions on Control System Technology, vol. 13, no. 4, pp. 593-598, July 2005.
[13] M. Aicardi, G.. Casalino, A. Bicchi, and A. Balestrino, “Closed-loop steering of unicycle like vehicles via Lyapunov techniques,” IEEE Robotics & Automation Magazine, vol.2, no.1, pp.27 – 35, March 1995.
[14] S. H. Wang, Nonlinear motion control and human-aware navigation of a two-wheeled self-balancing mobile robot, M.S. Thesis, Department of Electrical Engineering, National Chung Hsing University, Taichung, Taiwan, July 2009.
[15] R. Siegwart and I R Nourbakhsh, Introduction to autonomous mobile robots, 1st Ed., Bradford, 2004.
[16] E. A. Sisbot, L. F. Marin-Urias, R. Alami, and T. Simeon “A mobile robot that performs human acceptable motions,” in Pro. IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.1811-1816, October 2006.
[17] E. A. Sisbot, A. Clodic, L. F. Marin-U., M. Fontmarty, L. Brethes, and R. Alami, “Implementing a human-aware robot system,” IEEE International Symposium on Robot and Human Interactive Communication, pp.727-732, September 2006.
[18] C. K. Lin and S. D.Wang, “Robust self-tuning rotated fuzzy basis function controller for robot arms,” Control Theory and Applications, IEE Proceedings, vol.144, no.4, pp.293-298, July 1997.
[19] Z. Huaguang, L. Cai and B. Zeungnam, “A fuzzy basis function vector-based multivariable adaptive controller for nonlinear systems,” IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 30 no.1, pp.210-217, Feb. 2000.
[20] C. K. Lin, “Adaptive critic autopilot design of Bank-to-turn missiles using fuzzy basis function networks,” IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 35 no.2, pp.197-207, April 2005.
[21] W. Wang, X.D. Liu and J. Q. Yi, “Structure design of two types of sliding-mode controllers for a class of under-actuated mechanical systems,” IET Proceeding of Control Theory and Applications, vol.1, no.1, pp. 163-172, Jan. 2007



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top