跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/03 01:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃昭翔
研究生(外文):Jhao-Siang Huang
論文名稱:高耦合與高圈數比CMOS變壓器之設計
論文名稱(外文):Design of high coupling and high turns ratio transformer in CMOS technology
指導教授:許恒銘
學位類別:碩士
校院名稱:國立中興大學
系所名稱:電機工程學系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:101
中文關鍵詞:高耦合高圈數比CMOS變壓器
外文關鍵詞:high couplinghigh turns ratiotransformer
相關次數:
  • 被引用被引用:2
  • 點閱點閱:202
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究探討變壓器的佈局,以高耦合與高圈數比作為設計前提,改善以往設計變壓器時,耦合係數與圈數比不能同時兼具的問題,本論文主要分為三個研究主題,探討三個不同系列的變壓器。
第一個主題提出簡易型佈局的高耦合變壓器,以CMOS 0.13 製程技術實現,在佈局上以每層金屬層繞一圈的型式,在變壓器對稱的兩端形成階梯狀,增加一次側與二次側的重疊面積,以達到高耦合量。
第二個主題提出中間抽頭(Central Tap)型式之變壓器,以CMOS 90 nm製程技術實現,整合傳統Central Tap型式之電感器為變壓器,利用堆疊型式佈局以達變壓器高耦合係數,進而發展不圈同數比以利實際應用於電路上,此外,以中間抽頭將變壓器分為上、下兩半部對稱,也為佈局上帶來一項便利。
第三個主題提出多組合型式之變壓器,以CMOS 90 nm 製程技術實現,設計概念為將兩個變壓器合而為一,變壓器整體可視為由四個電感器組成,佈局上利用堆疊型式並且利用四個電感器相互纏繞的方式,任兩個電感皆可組成一變壓器,在使用上更加靈活運用。
上述三個主題的變壓器設計共通特點為利用製程所提供的多層金屬,採堆疊型式佈局,提高變壓器耦合係數,且固定在小面積之下,實現兼具高耦合、高圈數比與小面積的變壓器。


In this study, the high coupling and high turns ratio transformer layouts are proposed, this thesis includes three research themes of transformers.
The first topic proposes a high coupling layout using CMOS 0.13 technology, each metal layer uses one loop and the symmetric port of the transformer are in stair, formation of stair on both ends of the transformer that produces high turn ratio to achieve excellent coupling coefficient.
The second topic proposes a central tap transformer in CMOS 90 nm technology, integrating traditional central tap inductors, the layout using a stack transformer to achieve coupling coefficient, development different turn ratio to facilitate the practical of circuit application.
The third topic proposes a multiple combination transformers in CMOS 90 nm technology. The design merges two transformers into one device area. Hence, four inductors are coupling each other to acquire multiple turn ratios.
The three themes use the common features provided by the multi-layer metal, the layout using a stack to achieve high coupling coefficient in a small area.


致謝......I
摘要......III
Abstract......IV
目錄......V
圖目錄......VII
表目錄......XI
第一章 序論......1
1-1 研究背景......1
1-2 文獻回顧......2
1-3 論文架構......6
第二章 變壓器理論......7
2-1變壓器原理與相關參數......7
2-2 變壓器功率轉換......10
2-3 變壓器輸出功率......14
2-4 變壓器損耗......15
2-4-1集膚效應(skin effect)......15
2-4-2鄰近效應(proximity effect)......16
2-4-3基底損耗(substrate loss)......17
2-5 變壓器量測 18
2-5-1 Kelvin 4點探針直流量測......18
2-5-2四埠內連線去嵌化法......20
第三章 多圈數比堆疊型變壓器 ......23
3-1 簡易佈局之高耦合量高圈數比變壓器......23
3-1-1 K系列變壓器架構說明......23
3-1-3 結論......50
3-2 對稱型Central Tap變壓器......51
3-2-1 A系列變壓器研究動機與架構說明......51
3-2-2 A系列變壓器量測結果分析......59
3-2-3 結論......65
3-3 多組合變壓器設計......67
3-3-1 B系列變壓器架構說明......67
3-3-2 B系列變壓器量測分析......74
3-3-3 結論......88
第四章 總結......90
4-1 量測結果預測......90
4-2 結論......93
4-3 變壓器與相關文獻特性比較......93
4-3 未來工作目標......98
參考文獻......99


[1]John R. Long, “Monolithic transformers for silicon RF IC design,” IEEE Journal of Solid-State Circuits, vol. 35, pp.1368-1382, Sep. 2000.
[2]Jianjun, J. Zhou, D.J. Allstot, “Monolithic transformers and their application in a differential CMOS RF low-noise amplifier,” IEEE Journal of Solid-State Circuits, vol. 33,no.12, pp.2020-2027, Dec. 1998.
[3]W. Simburger, H.D. Wohlmuth, P. Weger, “A monolithic 3.7 W silicon power amplifier with 59% PAE at 0.9 GHz,” IEEE Solid-State Circuits, pp.230-231, Feb. 1999.
[4]D. Baek, T. Song, E. Yoon, S. Hong, “8-GHz CMOS quadrature VCO using transformer-based LC tank,” IEEE Microwave and Wireless Components Letters, vol. 13,no.10, pp.446-448, Oct. 2003.
[5]D.J. Cassan, J.R. Long, “A 1-V transformer-feedback low-noise amplifier for 5-GHz wireless LAN in 0.18-μm CMOS,” IEEE Journal of Solid-State Circuits, vol. 38, pp.427 – 435, Mar. 2003.
[6]P.W. Lai, S.I. Long, “A 5GHz CMOS low phase noise transformer power combining VCO,” IEEE Radio Frequency Integrated Circuits, pp. 113-116, June 2006.
[7]M. Danesh, J. R. Long, “Differentially driven symmetric microstrip inductors,” IEEE, Microwave Theory and Techniques, vol. 50, pp.332-341, Jan. 2002.
[8]E. Frlan, S. Meszaros, M. Cuhaci, J.Wight, “Computer-aided design of square spiral transformers and inductors,” IEEE Microwave Symposium Digest, vol. 2, pp.661-664, June 1989.
[9]K. Shibata, K. Hatori, Y. Tokumitsu, and H. Komizo, “Microstrip Spiral Directional Coupler,” IEEE Microwave Theory and Techniques, vol. 29, pp.680-689, July 1981.
[10]K. Shibata, K. Hatori, Y. Tokumitsu, and H. Komizo, “Microstrip Spiral Directional Coupler,” IEEE Microwave Theory and Techniques, vol. 29, pp.680-689, July 1981.
[11]E. Frlan, S. Meszaros, M. Cuhaci, J.Wight, “Computer-aided design of square spiral transformers and inductors,” IEEE Microwave Symposium Digest, vol. 2, pp.661-664, June 1989.
[12]M. Danesh, J. R. Long, “Differentially driven symmetric microstrip inductors,” IEEE, Microwave Theory and Techniques, vol. 50, pp.332-341, Jan. 2002.
[13]A. Zolfaghari, A. Chan, B. Razavi, “Stacked Inductors and Transformers in CMOS Technology,” IEEE Journal of Solid-State Ciccuits, vol.36, no.4, pp.620-628, Apr. 2001.
[14]M. W. Geen, G. J. Geen, R. G. Arnold, J. A. Jenkins, and R. H. Jansen, “Miniature multilayer spiral inductors for GaAs MMICs,” in Proc. GaAs IC Symp., Oct. 1989,pp.303-306.
[15]W. Z. Chen, K. C. Hsu, “Miniaturized 3-dimensional transformer design,” IEEE Custom Integrated circuit, pp.285-288, June 2005.
[16]Y.S. Lin, “Implementation of perfect-magnetic-coupling ultralow-loss transformer in RFCMOS technology,” IEEE Electron Device Letters, vol 26, pp.832-835, Nov. 2005.
[17]C.P. Yue, S.S. Wong, “On-chip spiral inductors with patterned ground shields for Si-based RF ICs,” IEEE Journal of Solid-State Circuits, vol.33, no.5, pp.743-752, May 1998.
[18]A.M. Niknejad, R.G. Meyer, “Analysis of Eddy-Current Losses Over Conductive Substrates with Applications to Monolithic Inductors and Transformers,” IEEE Transactions on Microwave Theory and Techniques, vol. 49, no.1, pp.166-176, Jan. 2001.
[19]H.M. Hsu, C.W. Tseng, “Design of On-Chip Transformer With Various Coil Widths to Achieve Minimal Metal Resistance,” IEEE Electron Device Letters, vol. 28, no.11, pp.1029-1032, Nov. 2007.
[20]C.C. Lim, K.S. Yeo, K.W. Chew, “An Area Efficient High Turn Ratio Monolithic Transformer for Silicon RFIC,” IEEE Radio Frequency Integrated Circuits Symposium, pp.167-170, June 2008.
[21]W.B. Kuhn, N.M. Ibrahim,” Analysis of Current Crowding Effects in Multiturn Spiral Inductors” IEEE Transactions on Microwave Theory and Techniques, vol. 49, no. 1, pp.31-38, Jan. 2001.
[22]B.L. Ooi, D.X. Xu, P.S. Kooi, and F.J. Lin,” An Improved Prediction of Series Resistance in Spiral Inductor Modeling With Eddy-Current Effect,” IEEE Transactions on Microwave Theory and Techniques, vol. 50, no. 9, pp. 1143-1149, Sep. 2002.
[23]K. Y. Tong and C. Tsui, ”A Physical Analytical Model of Multilayer On Chip Inductor,” IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 4, pp.1143-1149, Apr. 2005.
[24]A. L. Niknejad, R. G. Meyer, “Design, simulation and application of inductors and transformers for SI RF ICS,” IEEE Circuits and Devices Magazine, vol. 17, pp.59-59, May 2001.
[25]J. Zou, C. Liu, D.R. Trainor, J. Chen, J.E. Schutt-Aine, P.L. Chapman,” Development of Three-Dimensional Inductor Using Plastic Deformation Magnetic Assembly,” IEEE Transactions on Microwave Theory and Techniques,vol. 51, no. 4, pp.1143-1149, Apr. 2005.
[26]C. H. Chen et al. “A general noise and S-parameter deembedding procedure for on-wafer high-frequency noise measuremenb of MOSFETs,” IEEE Trans. Microwave Theory Tech., vol. 49, pp. 1004-1005, May 2001.
[27]許展榕, “低損耗傳輸線與寬頻低雜訊放大器之研究”,國立中興大學電機工程學系碩士論文.
[28]H.M. Hsu, “Analytical Formula for Inductance of Metal of Various Widths in Spiral Inductors” IEEE Transactions on Electron Devices, vol. 51, no. 8, August 2004.
[29]H.M. Hsu, “Implementation of High-Coupling and Broadband Transformer in RFCMOS Technology” IEEE Transactions on Electron Devices, vol. 52, no. 7, July 2005.
[30]D. M. Pozar, Microwave Engineering-3rd ed, Wiley, New York, 2005.
[31]A. W. L. Ng, H. C. Luong, “A 1-V 17-GHz 5-mW CMOS Quadrature VCO Based on Transformer Coupling” IEEE Journal of Solid-State Circuits, vol. 42, NO. 9, September. 2007.
[32]W. Bakalski, A. Vasylyev, W. Simbiirger, R. Thuringer, H. D. Wolilmuth, A. L. Scholtz, P. U''eger, “A fully integrated 7-18 GHz Power Amplifier with on-chip output balun in 75 GHz-fT SiGe-Bipolar” IEEE BCTM 3.5,2003.
[33]F.W. Grover, “Inductance Calculations working formulas and tables”
[34]H.M. Hsu, S.H. Lai, C.J. Hsu, “High Turn Ratio and High Coupling Coefficient Transformer in 90-nm CMOS Technology” IEEE Electron Device Letters, Vol.30, no. 5, May 2009.
[35]H.M. Hsu, S. H. Lai, C. J. Hsu “Compact Layout of On-Chip Transformer” IEEE Transactions on Electron Devices, vol. 57, no. 5, May 2010.
[36]D. M. Pozar, Microwave Engineering-3rd ed, Wiley, New York, 2005.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top