|
[1] 邱淑媞,「民國96年癌症登記報告」,行政院衛生署國民健康局。 [2] 認識磁振造影MRI,台中榮總磁振造影中心網站,網址:http://www.healthtc.com/。 [3] C. M. Wang, G. C. Lin, C. Y. Lin, and R. M. Chen, “An Unsupervised Kalman Filter-Based Linear Mixing Approach to MRI Classification,” Proceedings of the 2004 IEEE Asia-Pacific Conference on Circuits and Systems, vol. 2, pp. 1105-1108, 6-9 Dec. 2004. [4] C. M. Wang, C. C. C. Chen, S. C. Yang, P. C. Chung, Y. N. Chung, C. W. Yang, and C. I. Chang, “An Unsupervised Orthogonal Subspace Projection Approach to MR Image Classification,” Optical Engineering, vol. 41, no. 7, pp. 1546-1557, Jul. 2002. [5] C. M. Wang, S. C. Yang, P. C. Chung, C. I. Chang, C. S. Lo, C. C. Chen, C. W. Yang, and C. H. Wen, “Orthogonal Subspace Projection-Base Approaches to Classification of MR Images Sequences,” Computerized Medical Imaging and Graphics, vol. 25, no. 6, pp. 465-476, Dec. 2001. [6] M. C. Clark, L. O. Hall, D. B. Goldgof, L. P. Clarke, R. P. Velthuizen, and M. S. Silbiger, “MRI Segmentation using Fuzzy Clustering Techniques,” IEEE Engineering Med. Biol. Mag., pp. 730-742, Dec. 1994. [7] M. N. Ahmed, S. M. Yamany, A. A. Farag, and T. Moriarty, “Bias Field Estimation and Adaptive Segmentation of MRI Data using a Modified Fuzzy C-means Algorithm,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition. vol. 1, pp. 250-255, Jun. 1999. [8] M. N. Ahmed, S. M. Yamany, N. Mohamed, A. A. Farag, and T. Moriarty, “A Modified Fuzzy C-Means Algorithm for Bias Field Estimation and Segmentation of MRI Data,” IEEE Trans. on Medical Imaging, vol. 21, no. 3, pp. 193-199, Mar. 2002. [9] X. Du, Y. Li, and D. Yao, “A Support Vector Machine Based Algorithm for Magnetic Resonance Image Segmentation,” Fourth International Conference on Natural Computation, 18-20 Oct. 2008. [10] C. M. Wang, C. Y. Lin, J. A. Lin, and Z. H. Zheng, “Application of Extenics Approach in MRI Classification,” 18th IPPR Conference on Computer Vision, Graphics and Image Processing, Taipei, Taiwan, pp. 15-20, Aug. 2005. [11] J. C. Su, C. M. Wang, S. C. Yang, and G. H. Chang, “An Extenics Approach to MRI Classification,” 2006 IEEE International Conference on Systems, Man, and Cybernetics, Taipei, Taiwan, pp. 562-567, Oct. 2006. [12] W. E. Reddick, J. O. Glass, E. N. Cook, T. D. Elkin, and R. J. Deaton, “Automated Segmentation and Classification of Multispectral Magnetic Resonance Images of Brain using Artificial Neural Networks,” IEEE Trans. on Medical Imaging, vol. 16, no.6, pp. 911-918, Dec. 1997. [13] J. S. Lin, R. M. Chen, and Y. M. Huang, “Medical Image Segmentation using Mean Field Annealing Network,” IEEE Conference on Image Processing, vol. 2, pp. 855-858, Oct. 1997. [14] J. Alirezaie, M. E. Jernigan, and C. Nahmias, “Automatic Segmentation of Cerebral MR Images using Artificial Neural Networks,” IEEE Trans. on Nuclear Science, vol. 45, no. 4, pp. 2174-2182, Aug. 1998. [15] J. S. Lin, K. S. Cheng, and C. W. Mao, “Multispectral Magnetic Resonance Images Segmentation using Fuzzy Hopfield Neural Network,” International Journal of Biomedical Computing, pp. 205-214, Aug. 1996. [16] C. M. Wang, S. C. Yang, G. H. Chang, and J. A. Lin, “Extension Neural Network Approach in MRI Classification,” The 1st Intelligent Living Technology Conference, ILT 2006, Taichung, Taiwan, Jun. 2006. [17] A. Mayer, and H. Greenspan, “An Adaptive Mean-Shift Framework for MRI Brain Segmentation,” IEEE Trans. on Medical Imaging, vol. 28, no. 8, pp. 1238-1250, Aug. 2009. [18] A. Likas, N. Vlassis, and J. J. Verbeek, “The Global K-means Clustering Algorithm,” Pattern Recognition, vol. 36, no. 2, pp. 451-461, Feb. 2003. [19] 楊建芳,李寬容,李三剛,李覃,楊康寧,何永仁,沈戊忠,韓念祖,蘇友吉,「磁振造影診斷學」,華榮出版社,1980。 [20] R. Adams, and L. Bischof, “Seeded Region Growing,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 16, no. 6, pp. 641-647, 1994. [21] A. Mehnert, and P. Jackway, “An Improved Seeded Region Growing Algorithm,” Pattern Recognition Letters, vol. 18, no. 10, pp. 1065-1071, Oct. 1997. [22] T. Pavlidis, and Y. T. Liow, “Integrating Region Growing and Edge Detection,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 12, no. 3, pp. 225-233, Mar. 1990. [23] N. R. Pal, and S. K. Pal, “A review on Image Segmentation Techniques,” Pattern Recognition, vol. 26, no. 9, pp. 1277-1294, Sep. 1993. [24] C. C. Chu, and J. K. Aggarwal, “The Integration of Image Segmentation Maps using Region and Edge Information,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 15, no. 12, pp. 1241-1252, Dec. 1993. [25] A. Tremeau, and N. Borel, “A Region Growing and Merging Algorithm to Color Segmentation,” Pattern Recognition, vol. 30, no. 7, pp. 1191-1203, Jul. 1997. [26] S. A. Hojjatoleslami, and J. Kittler, “Region Growing: A New Approach,” IEEE Trans. on Image Processing, vol. 7, no. 7, pp. 1079-1084, Jul. 1998. [27] J. Fan, D. K. Y. Yau, A. K. Elmagarmid, and W. G. Aref, “Automatic Image Segmentation by Integrating Color-edge Extraction and Seeded Region Growing,” IEEE Transactions on Image Processing, vol. 10, no. 10, pp. 1454-1466, Oct. 2001. [28] F. Y. Shih, and S. Cheng, “Automatic Seeded Region Growing for Color Image Segmentation,” Image and Vision Computing, vol. 23, no. 10, pp. 877-886, Sep. 2005. [29] H. Gudbjartsson, and S. Patz, “The Rician Distribution of Noisy MRI Data,” Magn Reson Med. vol. 34, no. 6, pp. 910-914, Dec. 1995. [30] C. E. Metz, “ROC Methodology in Radiological Imaging,” Invest Radiol, vol. 21, no. 9, pp. 720-723, Sep. 1986.
|