跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/03/16 13:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林辛承
研究生(外文):Hsin-ChengLin
論文名稱:使用泛用型普氏分析整合消費者回應特徵並建構預測模型-以隨身碟為例
論文名稱(外文):Applying Generalized Procrustes Analysis in Integrations of Characteristics of Consumer’s Response and Conducting Model Prediction - Using Flash Drives as Case Study
指導教授:謝孟達謝孟達引用關係
指導教授(外文):Meng-Dar Shieh
學位類別:碩士
校院名稱:國立成功大學
系所名稱:工業設計學系碩博士班
學門:設計學門
學類:產品設計學類
論文種類:學術論文
論文出版年:2009
畢業學年度:98
語文別:中文
論文頁數:76
中文關鍵詞:泛用型普氏分析隨身碟彈性問卷消費者特徵
外文關鍵詞:Generalized Procrustes AnalysisFlash DriveFlexible QuestionnaireConsumer Feature
相關次數:
  • 被引用被引用:0
  • 點閱點閱:465
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用泛用型普氏分析結合彈性問卷進行隨身碟之感性工學研究,預期透過方法論的引入,使得彈性問卷評價方式能夠使用於產品意象評估,不只作為傳統研究方法的輔助手段,更能夠進一步成為量測消費者意向的主要測量工具。
研究流程包括探討使用彈性問卷的實驗流程與結果,與傳統研究方法之間的異同;透過「使用者個別特徵萃取」、「建立樣本偏好分布」以及「使用者分群效力」等三個面向,嘗試建立比較項目以理解方法論之間的差異。並探討分析所得之受測者特徵資料可應用於感性工學研究中的哪些層面。
研究以隨身碟為例,結果顯示1.一般問卷使用泛用型普氏分析,能夠得到接近傳統研究的形容詞分析成果。2.泛用型普氏分析更能夠從傳統方法無力處理的彈性問卷中萃取出形容詞成分,以用於建立隨身碟偏好分布圖。3.彈性問卷在獲取受測者評價上,較一般問卷方式能夠得到更完整的評價分布。4.使用泛用型普氏分析所得到的消費者回應特徵,可用來做為受測者分群的指標,進一步提升分群的效度。
This study focuses on applying Generalized Procrustes Analysis (GPA) in conducting Kansei Engineering System (KES) research on flash drives, which is hoped to introduce “flexible questionnaire assessments” as a way of evaluating product perception through the conducting of methodology. And by using of the method, it would become not only a supportive technique of the traditional fashion, but also the primarily measurements of how consumers are thinking.
The study includes three aspects for comparing the differences between traditional methods and the proposed method: The extraction of individual features, sample preference mapping, and the effectiveness of clustering. Further discussion would be on the application of subjects’ responsive features inside of the KES research.
The result shows that 1. Using GPA on normal questionnaires can derive results similar to the traditional analytical method. 2. GPA can even extract constructs out of flexible questionnaires for further preference mapping of the samples, which normal methods cannot. 3. Conducting flexible questionnaires assessments would have a more comprehensive feedback on sample evaluations than the normal questionnaires. 4. With the use of GPA, the subjects’ affective response can be retrieved and applied, which raises the effectiveness of clustering analysis.
中文摘要 I
ABSTRACT II
目錄 III
表目錄 VI
圖目錄 VIII
第一章 緒論 1
1-1研究動機 1
1-2研究目的 2
1-3研究範圍與限制 3
1-4研究架構 3
第二章 文獻探討 6
2-1感性工學研究 6
2-1-1起源 6
2-1-2感性工學的類型 7
2-1-3語意差異法 7
2-2感性工學研究流程 9
2-2-1取得受測者回應的特徵 9
2-2-2產生特徵維度 10
2-2-3受測者分群 11
2-2-4建構預測模型 13
2-3泛用型普氏分析 14
2-3-1圖形(Shape)與特徵點(Landmarks) 14
2-3-2普氏距離與普氏分析 15
2-3-3普氏分析與泛用型普氏分析 19
2-3-4泛用型普氏分析的優點 20
2-3-5相關文獻整理 21
第三章 研究流程 23
3-1實驗規劃 23
3-1-1資料收集 23
3-1-2取得消費者評價 24
3-1-3分析消費者評價特徵 24
3-1-4分群與結果驗證 24
3-2資料收集及初步篩選 26
3-2-1樣本收集與篩選標準 26
3-2-2語彙收集 27
3-2-3挑選代表性樣本及語彙 27
3-3問卷規劃及設計 29
3-3-1一般問卷 30
3-3-2彈性問卷 31
第四章 資料分析 34
4-1問卷資料整理 34
4-1-1一般問卷 34
4-1-2彈性問卷 35
4-1-3回答情形整理 36
4-2泛用型普氏分析 38
4-2-1取得受測者評價特徵:一般問卷 38
4-2-2取得受測者評價特徵:彈性問卷 42
4-2-3受測者評價特徵比較 45
4-2-4樣本的評價特徵 46
4-3主成分分析 49
4-3-1一般問卷:平均資料方式 49
4-3-2一般問卷:泛用型普氏分析 51
4-3-3彈性問卷:泛用型普氏分析 54
4-4受測者特徵於分群、權重調整之探討 58
4-4-1建立效度標準 58
4-4-2受測者權重與分群 58
第五章 結論與建議 62
5-1研究結論 62
使用者個別特徵萃取 62
建立樣本偏好分布 62
使用者分群效力 63
5-2未來研究建議 64
參考文獻 66
附錄一 分群效果指標(DB值)說明 68
附錄二 形容詞語彙、隨身碟樣本收集 71
形容詞語彙(共112個) 71
隨身碟樣本圖片(共30個) 72
附錄三 問卷原始資料處理 74
資料平均:一般問卷 74
GPA一致性結構:一般問卷 75
GPA一致性結構:彈性問卷 76
B?ckenholt, U. (2004). Comparative Judgments as an Alternative to Ratings: Identifying the Scale Origin. Psychological Methods, 9(4), 453-465.
De Jong, S., Heidema, J., & van der Knaap, H. C. M. (1998). Generalized procrustes analysis of coffee brands tested by five European sensory panels. Food Quality and Preference, 9(3), 111-114.
Fillion, L., & Kilcast, D. (2002). Consumer perception of crispness and crunchiness in fruits and vegetables. Food Quality and Preference, 13(1), 23-29.
Gower, J. (1975). Generalized procrustes analysis. Psychometrika, 40(1), 33-51.
Hein, K. A., Jaeger, S. R., Tom Carr, B., & Delahunty, C. M. (2008). Comparison of five common acceptance and preference methods. Food Quality and Preference, 19(7), 651-661.
Hughes, G. D. (1975). Upgrading Semantic Differential. Journal of the Market Research Society, 17(1), 41-44.
Meullenet, J. F., Xiong, R., & Findlay, C. J. (2007). Multivariate and probabilistic analyses of sensory science problems (1st ed.). [Chicago, Ill.] Ames, Iowa: IFT Press ; Blackwell Pub, 37-43.
Mireaux, M., Cox, D. N., Cotton, A., & Evans, G. (2007). An adaptation of repertory grid methodology to evaluate Australian consumers' perceptions of food products produced by novel technologies. Food Quality and Preference, 18(6), 834-848.
Nagamachi, M. (1995). Kansei Engineering: A new ergonomic consumer-oriented technology for product development. International Journal of Industrial Ergonomics, 15(1), 3-11.
Napolitano, F., De Rosa, G., Braghieri, A., Grasso, F., Bordi, A., & Wemelsfelder, F. (2008). The qualitative assessment of responsiveness to environmental challenge in horses and ponies. Applied Animal Behaviour Science, 109(2-4), 342-354.
Osgood, C. E. (1952). The nature and measurement of meaning. Psychol Bull, 49(3), 197-237.
Russell, C. G., & Cox, D. N. (2004). Understanding middle-aged consumers' perceptions of meat using repertory grid methodology. Food Quality and Preference, 15(4), 317-329.
Sahmer, K., & Qannari, E. M. (2008). Procedures for the selection of a subset of attributes in sensory profiling. Food Quality and Preference, 19(2), 141-145.
Sch?tte, S. T. W., Eklund, J., Axelsson, J. R. C., & Nagamachi, M. (2004). Concepts, methods and tools in Kansei engineering. Theoretical Issues in Ergonomics Science, 5(3), 214 - 231.
Smith, W. R. (1956). Product Differentiation and Market Segmentation as Alternative Marketing Strategies. The Journal of Marketing, 21(1), 3-8.
Steenkamp, J. B. E. M., Trijp, H. C. M. v., & Verhallen, T. M. M. (1987). An integrated procedure for building a common perceptual space based on completely individualized data collection. Contemporary Research in Marketing: Proceedings of the 16th Annual Conference of the European Marketing Academy. Toronto, Canada: York University. pp.WD5-WD18.
Teichert, T., Shehu, E., & von Wartburg, I. (2008). Customer segmentation revisited: The case of the airline industry. Transportation Research Part A: Policy and Practice, 42(1), 227-242.
Xiong, H., Zhang, D., Martyniuk, C. J., Trudeau, V. L., & Xia, X. (2008). Using generalized procrustes analysis (GPA) for normalization of cDNA microarray data. BMC Bioinformatics, 9, 25.
Yamamoto, K., Yoshikawa, T., & Furuhashi, T. (2005). Division method of subjects by individuality for stratified analysis of SD evaluation data. IEEE International Symposium on Micro-NanoMechatronics and Human Science. 29-34
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top