跳到主要內容

臺灣博碩士論文加值系統

(100.28.0.143) 您好!臺灣時間:2024/07/14 22:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:羅泳中
研究生(外文):Yung-ChungLo
論文名稱:結合光-暗醱酵及微藻光自營程序開發高產率且無CO2排放之纖維素生物產氫整合型系統
論文名稱(外文):Developing high-yield and CO2-free cellulosic biohydrogen production system via integration of dark-photo fermentation and microalgae photoautotrophic processes
指導教授:張嘉修張嘉修引用關係
指導教授(外文):Jo-Shu Chang
學位類別:博士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:265
中文關鍵詞:纖維素酵素水解纖維素前處理暗醱酵產氫光醱酵產氫微藻類二氧化碳固定整合型生物產氫系統
外文關鍵詞:Enzymatic cellulose hydrolysiscellulose pretreatmentdark fermentationphoto fermentationmicroalgaeCO2 fixationintegrated bioH2 production system
相關次數:
  • 被引用被引用:1
  • 點閱點閱:306
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要開發一套新穎的高氫氣產率且零二氧化碳排放之纖維素生物醱酵產氫程序。由於一般文獻多以糖類(如葡萄糖、果糖、蔗糖、木糖)與澱粉類(如可溶解性澱粉、樹薯澱粉、馬鈴薯、地瓜)為碳源進行醱酵產氫,為降低成本與永續發展,本研究企圖以台灣主要農業廢棄物(稻桿)為碳源,開發低成本高效率的纖維素生物產氫程序。此纖維素生物產氫程序包括纖維素料源前處理與酵素水解糖化、暗醱酵產氫、光醱酵產氫與藻類二氧化碳固定等,將低價的農業廢棄物經由無二氧化碳排放的整合型生物醱酵程序轉化為潔淨能源-氫氣。本研究首先探討於牛糞中所篩選出之高溫厭氧菌株Clostridium sp. TCW1之最佳纖維素分解酵素生產條件。結果顯示,Clostridium. sp. TCW1可於胞外生產內切型纖維酵素、外切型纖維酵素、纖維二糖酵素與半纖維酵素,其最佳酵素生產條件如下:溫度為60oC,初始pH值為 7,攪拌速率為200 rpm,最佳碳源為濾紙,最佳碳源濃度為5 g/L。
纖維素前處理是提升纖維素水解效能相當重要的程序,本研究利用鹼處理進行纖維素前處理,並探討於不同溫度下處理對後續酵素水解之效能。結果顯示,纖維素經高溫鹼處理後,其酵素水解效能達最佳。此外,酵素水解之最佳條件亦是需要的因素。本研究探討初始pH值、攪拌速率與濾紙酵素(FPase)添加量對纖維酵素水解效能之影響。結果顯示,當溫度為60oC、pH值為6、攪拌速率為200 rpm、濾紙酵素(FPase)添加量為10 U/ml,有最佳纖維水解效能,最大還原糖生產速率與還原糖產率分別為1.482±0.005 g/L/h與133.94±0.84%,其糖類組成以纖維二糖(47.98±0.39%)為主,木二糖(18.06±0.02%),葡萄糖(18.85±0.47%),木糖(7.25±0.05%)與阿拉伯糖(2.19±0.07%)。
本研究成功從高產氫速率之反應器篩選出七株暗醱酵產氫菌株,分別鑑定為Clostridium butyricum CGS2、Cl. butyricum CGS5、Cl. pasteurianum CH1、Cl. pasteurianum CH4、Cl. pasteurianum CH5、Cl. pasteurianum CH7、Klebsiella sp. HE1,並以不同碳源(??cellulose、CMC、狼尾草,蔗渣、稻桿、稻殼、xylan、葡萄糖、果糖、蔗糖、木糖等)進行該7株產氫菌株之產氫測試。結果顯示,Cl. butyricum CGS5為最佳菌株,可利用糖類(葡萄糖、果糖、蔗糖、木糖)、可溶性澱粉、纖維水解液有效進行醱酵產氫。
本研究亦企圖以暗醱酵出流水進行光醱酵測試。首先以模擬暗醱酵出流水組成之合成培養基(含甲酸、乳酸、乙酸、丁酸與乙醇)探討光醱酵產氫之效能,發現當以乳酸、乙酸與丁酸為碳源時,光醱酵產氫菌株Rhodopseudomonas palustris WP3-5可有效產氫,但甲酸與乙醇則否。當碳源(乳酸、乙酸與丁酸)濃度為1.0 g/L時,其氫氣產率可達最高,故證實R. palustris WP3-5可有效將乳酸、乙酸與丁酸醱酵產氫。
接著,本研究以蔗糖為碳源建構暗-光醱酵結合藻類光自營培養之整合型系統,並探討其氫氣生產效能。先以modified Endo培養基成功結合暗-光醱酵系統,不僅可於批次系統操作,亦可以連續流方式進行穩定操作達80天之久,其整合後之氫氣產率高達5.81 mol H2/mol hexose。此暗-光醱酵系統所生產的二氧化碳也可藉由藻類光自營系統完全固定吸收,達到高氫氣產率且零二氧化碳排放之效果。最後,本研究成功地利用稻桿為碳源,進一步將纖維素前處理及酵素水解程序結合暗-光醱酵與藻類光自營培養,進行纖維氫氣之生產,可將該系統升級為以纖維素碳源所建構的高氫氣產率且零二氧化碳排放之暗-光醱酵-微藻整合系統,並可穩定操作約9天,且其氫氣產率可達6.94 mol H2/mol hexose.
In this study, a novel sequential dark-photo fermentation (SDPF) and microalgae photoautotrophic process was developed to achieve high-yield and CO2-free cellulosic biohydrogen production. Conventionally, sugar (glucose, fructose, sucrose, and xylose) and starch (soluble starch, cassavas starch, potato, and sweet potato) feedstock were used for biohydrogen production. This study made an attempt to use rice straw (the most abundant crop residues in Taiwan) as carbon source to produce biohydrogen. The cellulosic feedstock could be used to produce bioH2 with integrated SPDF and microalgae photoautotrophic process, leading to low-cost and high-yield H2 production. The integrated bioH2 production process includes cellulose pretreatment, enzymatic hydrolysis, dark fermentation, photo fermentation, and photoautotrophic microalgae culture. First, Clostridium sp. TCW1 isolated from cow dung was used to produce cellulases. The optimal condition for cellulase production was determined. The Clostridium. sp. TCW1 strain could produce endoglucanase, exoglucanase, xylanase, and ?-glucosidase extracellularly. The optimal enzymatic production conditions were as follows: temperature (60oC), initial pH (7), agitation rate (200 rpm), optimal carbon source (filter paper) and optimal carbon source concentration (5.0 g/L).
Pretreatment of cellulosic feedstock is necessary to enhance cellulosic hydrolysis,. In this study, alkaline (NaOH) pretreatment with different temperature was conducted to examine for their effects on enzymatic hydrolysis. The results show alkaline pretreatment at high temperature led to higher efficiency for enzymatic hydrolysis of cellulose. The enzymatic hydrolysis conditions (temperature, initial pH, agitation rate, and FPase activity) were also optimized to enhance reducing sugar yield and reducing sugar production rate. The optimal cellulose hydrolysis conditions are as follows: temperature, 60oC; pH, 6; agitation rate, 200 rpm; FPase activity, 10 U/ml. Using the condition to hydrolyze rice straw, the maximum reducing sugar production rate and yield were 1.482±0.005 g/L/h and 133.94±0.84%, respectively. The sugar content consisted of cellobiose (47.98±0.39%), xylobiose (18.06±0.02%), glucose (18.85±0.47%), xylose (7.25±0.05%), and arabinose (2.19±0.07%).
Pure H2-producing strains used (Cl. butyricum (CGS2 and CGS5), Cl. pasteurianum (CH1, CH4, CH5, and CH7), and Klebsiella sp. HE1) were isolated form high-rate H2 producing bioreactors. A variety of carobn sources (namely, CMC, xylan, rice husk, rice straw, bagasse, glucose, fructose, sucrose, xylose, soluble starch, ?-cellulose, napiergrass, and bagasse) were used for bioH2 production via dark fermentation. The results show that Cl. butyricum CGS5 gave the best H2-producing performance on all the carbon sources examined.. The soluble metabolites (formate, lactate, acetate, butyrate, and ethanol) from dark fermentation were investigated to produce bioH2 with Rhodopseudomonas palustris WP3-5 on photo fermentation. The results show that R. palustris WP3-5 could convert acetate, lactate, and butyrate into bioH2 via photo fermentation. When the concentration of carbon sources (acetate, lactate, and butyrate) was 1.0 g/L, the maximum H2 yield (3.46±0.36 mol H2/mol acetate, 4.17±0.12 mol H2/mol lactate, 6.39±0.16 mol H2/mol butyrate) was obtained with R. palustris WP3-5.
This work also demonstrated the feasibility of integrating SDPF system and microalgae culture for high-yield H2 production using sucrose as sole carbon source. The results show that the SDPF system and microalgae photoautotrophic processes were successful set up when modified medium was used to produce bioH2. It could not be only operated on batch mode with SDPF processes, but also operated at 80 days on CSTR mode, where the overall H2 yield went up to 5.81 mol H2/mol hexose. A high-yield and CO2-free bioH2 production with integrated SDPF and microalgae system was also developed. The CO2 produced from SDPF processes was completely consumed via autotrophic growth of an isolated microalgal strain.
Finally, the cellulose pretreatment and enzymatic hydrolysis processes were combined with SDPF-microalgae processes to produce bioH2 from cellulosic feedstock (i.e., rice straw). The results show that the SDPF-microalgae system was successfully integrated with cellulose pretreatment and hydrolysis for cellulosic bioH2 production and the integrated process could be stably operated for 9 days on CSTR mode with a high H2 yield of up to 6.94 mol H2/mol hexose.

摘要 I
Abstract III
Acknowledgement VI
Contents VII
List of Figures XIII
List of Tables XXI
Chapter 1 Introduction 1
1.1 Motivation and purpose 1
1.2 Research Scope of this Dissertation 4
Chapter 2 Literature review 9
2.1 Lignocellulose 9
2.2 Rice straw 12
2.3 Cellulosic pretreatment/hydrolysis 13
2.3.1 Physical pretreatment 13
2.3.2 Chemical pretreatment 13
2.3.3 Physicochemical pretreatment 16
2.3.4 Biological pretreatment 18
2.3.5 Enzymatic pretreatment 18
2.4 Hydrogen production 21
2.4.1 Conventional hydrogen production methods 21
2.4.2 Biological hydrogen production 23
2.4.2.1 Photosynthesis process 27
2.4.2.2 Dark fermentation 29
2.4.2.3 Light fermentation 34
2.5 Cultivation of microalgae and carbon dioxide fixation 38
2.5.1 Phototrophic cultivation 39
2.5.2 Heterotrophic cultivation 41
2.5.3 Mixotrophic cultivation 41
2.5.4 Photoheterotrophic cultivation 42
2.5.5 Comparison of different cultivation conditions 42
2.6 Integration system of bioH2 production 48
Chapter 3 Materials and Methods 51
3.1 Chemical and materials 51
3.2 Equipment 54
3.3 Bacterial strains and cultivation medium 56
3.3.1 Cellulase-producing bacteria and culture medium 56
3.3.2 Dark fermentative H2-producing bacterial strains and fermentation medium 57
3.3.3 Photo fermentative H2-producing bacterial strains and fermentation medium 61
3.3.4 Microalgae photoautotrophic strain and fermentation medium 62
3.4 Data analysis 63
3.5 Thermophilic fermentation with Clostridium sp. TCW1 64
3.5.1 Enzymatic characterization 64
3.5.2 Location of enzyme production 65
3.5.3 Sodium dodecyl sulfate-polyacrlamid gel electrophoresis (SDS-PAGE) and Zymograhy 65
3.5.4 Optimum condition for cell growth, cellulase production, H2 production and enzymatic hydrolysis 66
3.5.5 Pretreatment methods by alkaline (NaOH) 67
3.6 Mesophilic dark fermentationwith H2-producing bacteria 68
3.6.1 Effect of carbon sources on H2 production with H2-producing bacteria 68
3.6.2 Effect of carbon sources concentrations on H2 production with H2-producing bacteria 69
3.7 Mesophilic photo fermentationwith H2-producing bacteria 69
3.7.1 Effect of carbon source and concentration on H2 yield 69
3.7.2 Effect of synthetic dark fermentative effluent on CSTR system 70
3.8 Sequential dark-photo fermentation and microalgae photoautotrophic process 70
3.8.1 Effect of medium composition on batch and CSTR system 70
3.8.2 Effect of CO2 from sequential dark-photo fermentation on microalgae system 71
3.9 Sequential dark-photo fermentation and microalgae photoautotrophic process on cellulose bioH2 production system 72
3.10 Analytical methods 75
3.10.1 Deterimination of cell concentration 75
3.10.2 Determination of dry cell weight (DCW) 75
3.10.3 Determination cellulose and hemicelluloses concentration 76
3.10.4 Determination of reducing sugar concentration by DNS method 76
3.10.5 Determination of protein concentration 79
3.10.6 Determination of gas product by gas chromatography (GC) 79
3.10.7 Determination of liquid product by high performance liquid chromatography (HPLC) 80
3.10.8 Determination of starch concentration by starch-iodide method 90
3.10.9 Determination of endoglucanase activity 91
3.10.10 Determination of exoglucanase activity 91
3.10.11 Determination of xylanase activity 92
3.10.12 Determination of ?-glucosidase activity 92
3.10.13 Determination of FPase activity 93
3.10.14 Cellulase enzyme assay on agar (Congo red) 93
3.10.15 Determination of NH4+ concentration 93
Chapter 4 Characterization and production of cellulases from anaerobic thermophilic bacterium Clostridium sp. TCW1 95
4.1 Determination of enzyme assay conditions for cellulases produced from Clostridium sp. TCW1 95
4.2 Identification of enzyme production location 105
4.3 Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Zymography 106
4.4 Effect of temperature on H2 production and enzyme production with Clostridium sp. TCW1 107
4.5 Effect of initial pH on H2 production and enzyme production with Clostridium sp. TCW1 114
4.6 Effect of agitation rate on H2 production and enzyme production with Clostridium sp. TCW1 121
4.7 Effect of carbon sources on H2 production and enzyme production with Clostridium sp. TCW1 127
4.8 Effect of filter paper concentrations on H2 production and enzyme production with Clostridium sp. TCW1 133
4.9 Kinetics of H2 production with Clostridium sp. TCW1 139
4.10 Summary 140
Chapter 5 Optimization of cellulose pretreatment methods and enzymatic hydrolysis of rice straw with enzymes produced from Clostridium sp. TCW1 141
5.1 Effect of acetone/enzyme ratio (v/v) on enzyme concentration 141
5.2 Effect of temperature of alkaline pretreatment on enzymatic hydrolysis of rice straw 143
5.3 Effect of temperature on enzymatic hydrolysis of rice straw 147
5.4 Effect of pH on enzymatic hydrolysis of rice straw 150
5.5 Effect of agitation rate on enzymatic hydrolysis of rice straw 153
5.6 Effect of cellulase dosage (FPase activity) on enzymatic hydrolysis of rice straw 156
5.7 Thermostability of cellulases and xylanases in enzymatic hydrolysis of rice straw 159
5.8 Summary 162
Chapter 6 Performance of dark fermentative H2 production of H2-producing bacterial isolates 163
6.1 Effect of synthetic polysaccharide sources and agriculture wastes on H2 production using pure bacterial isolates 163
6.2 BioH2 production kinetics of pure H2-producing isolates on synthetic carbon sources 170
6.3 Performance of H2 production with pure H2-producing isolates using cellulosic hydrolysates 184
6.4 Summary 195
Chapter 7 Photo fermentation using synthetic dark fermentative effluent 196
7.1 Effect of carbon sources on photo fermentation 196
7.2 Kinetics of photo H2 fermentation using acetate as carbon source 199
7.3 Kinetics of photo H2 fermentation using lactate as carbon source 204
7.4 Kinetics of photo H2 fermentation using butyrate as carbon source 208
7.5 Summary 214
Chapter 8 Sequential dark-photo fermentation (SDPF) and microalgae photoautotrophic processes for CO2-free cellulosic biohydrogen production 215
8.1 Effect of medium composition on batch bioH2 production with SDPF 216
8.2 Effect of carbon sources on batch bioH2 production with SDPF 218
8.3 Effect of medium composition on continuous bioH2 production with SDPF 222
8.4 Phototrophic fixation of CO2 produced from SDPF processes with an isolated microalga Chlorella vulgaris C-C strain 231
8.5 Sequential dark-photo fermentation (SDPF) and microalgae photoautotrophic processes for cellulosic (rice straw) bioH2 production 235
8.5 Summary 243
Chapter 9 Conclusions 244
References 247

Akin, D.E., Rigsby, L.L., Sethuraman, A., Morrison, W.H-III, Gamble, G.R., and Eriksson, K.E.L. (1995) Alterations in structure, chemistry, and biodegradability of grass lignocellulose treated with the white rot fungi Ceriporiopsis subvermispora and Cyathus stercoreus, Appl Environ Microbiol 61:1591-1598.
Akkerman, I., Janssen, M., Rocha, J., Wijffels, R.H. (2002) Photobiological hydrogen production: photochemical efficiency and bioreactor design. Int J Hydrogen Energy 27(11-12):1195-1208.
Amouri B. and Gargouri A. (2006) Characterization of novel ?-glucosidase from a Stachybotrys strain. Biochem Eng J 32:191-197.
APHA (1995) Standard methods for the examination of water and wastewater, 19th edn. American Public Health Association, New York,USA.
Argun, H., Kargi, F. (2010a) Effects of light source, intensity and lighting regime on bio-hydrogen production from ground wheat starch by combined dark and photo-fermentations. Int J Hydrogen Energy 35(4):1604-1612.
Argun, H., Kargi, F. (2010b) Bio-hydrogen production from ground wheat starch by continuous combined fermentation using annular-hybrid bioreactor. Int J Hydrogen Energy 35(12):6170-6178.
Argun, H., Kargi, F., (2010c) Photo-fermentative hydrogen gas production from dark fermentation effluent of ground wheat solution Effects of light source and light intensity. Int J Hydrogen Energy 35(4):1595-1603.
Argun, H., Kargi, F., Kapdan, I.K. (2008) Light fermentation of dark fermentation effluent for bio-hydrogen production by different Rhodobacter species at different initial volatile fatty acid (VFA) concentrations. Int J Hydrogen Energy 33(24):7405-7412.
Argun, H., Kargi, F., Kapdan, I.K. (2009a) Effects of the substrate and cell concentration on bio-hydrogen production from ground wheat by combined dark and photo-fermentation. Int J Hydrogen Energy 34(15):6181-6188.
Argun, H., Kargi, F., Kapdan, I.K. (2009b) Hydrogen production by combined dark and light fermentation of ground wheat solution. Int J Hydrogen Energy 34(10):4305-4311.
Asada, Y., Miyake, J. (1999) Photobiological hydrogen production. Journal of Bioscience and Bioengineering 88 (1):1-6.
Asada, Y., Tokumoto, M., Aihara, Y., Oku, M., Ishimi, K., Wakayama, T. (2006) Hydrogen production by co-cultures of Lactobacillus and a photosynthetic bacterium, Rhodobacter sphaeroides RV. Int J Hydrogen Energy31(11):1509-1513.
Barnola, J.M., Raynaud, D., Korotkevich, Y.S., Lorius, C. (1987) Vostok ice core provides 160,000-year record of atmospheric CO2. Nature 329:408-414.
Benemann, J. (1998) The technology of biohydrogen. In: Zaborsky O, editor. BioHydrogen. PlenumPress, NY. 19-30.
Benemann, J.R. (2000) Hydrogen production by microalgae. J Appli Phycol 12:291-300.
Braunstein, P., Matt, D., Nobel, D. (1988) Reactions of carbon dioxide with carbon-carbon bond formation catalyzed by transition-metal complexes. Chem Rev 88:747-764.
Brock, T.D., Madigan, M.T., Martinko, J.M., Parker, J. (1994) Biology of microorganisms. 7th edn. Prentice-Hall, New Jersey.
Bryson, M.F. and Drake, H.L. (1988) Energy-dependent transport of nickel by Clostridium pasteurianum. J Bacteriol 170(1):234-238.
Cadoche, L., and L?pez, G.D. (1989) Assessment of size reduction as a preliminary step in the production of ethanol from lignocellulosic wastes, Biol Wastes 30:153-157.
Cara, C., Moya, M., Ballesteros, I., Negro, M.J., Gonzalez, A., Ruiz, E. (2007) Influence of solid loading on enzymatic hydrolysis of steam exploded or liquid hot water pretreated olive tree biomass. Process Biochem 42:1003-1009.
Castellanos, O.F., Sinitsyn, A.P., Vlasenko, E.Y., (1995) Evaluation of hydrolysis conditions of cellulosic materials by Penicillium cellulase. Bioresour Technol 52, 109-117.
Chang, J.S. (2009) Bioenergy engineering for clean and sustainable energy production. Journal of Bioscience and Bioengineering 108 (S1):S41.
Chang, J.S., Lee, K.S., Lin, P.J. (2002) Biohydrogen production with fixed-bed bioreactor. Int J Hydrogen Energy 27 1167-1174.
Chen, C.C., Lin, C.Y., Chang, J.S. (2001) Kinetics of hydrogen production with continuous anaerobic cultures utilizing sucrose as the limiting substrate. Appl Microbiol Biotechnol 57 (1–2), 56–64.
Chen, C.C., Lin, C.Y., Chang, J.S. (2001) Kinetics of hydrogen production with continuous anaerobic cultures utilizing sucrose as the limiting substrate. Appl Microbiol Biotechnol 57:56-64.
Chen, C.C., Lin, C.Y., Lin, M.C. (2002) Acid-base enrichment enhances anaerobic hydrogen production process. Appl Microbiol Biotechnol 58:224-228.
Chen, C.Y, Yang, M.H., Yeh, K.L., Liu, C.H., Chang, J.S. (2008a) Biohydrogen production using sequential dark and photo fermentation processes. Int J Hydrogen Energy 33 (18):4755-4762.
Chen, C.Y. and Chang, J.S. (2006a) Enhancing phototropic hydrogen production by solid-carrier assisted fermentation and internal optical-fiber illumination. Process Biochem 41:2041-2049.
Chen, C.Y., Lu, W.B., Liu, C.H., Chang, J.S. (2008b) Improved phototrophic H2 production with Rhodopseudomonas palustris WP3-5 using acetate and butyrate as dual carbon substrates. Bioresour Technol 99:3609-3616.
Chen, C.Y., Yeh, K.L., Aisyah, R., Lee, D.J. and Chang, J.S (2010) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review. Bioresour Tcehnol (in press).
Chen, S.D., Sheu, D.S., Chen, W.M., Lo, Y.C., Huang, T.Y., Lin, C.Y., Chang, J.S. (2007) Dark hydrogen fermentation from hydrolyzed starch treated with recombinant amylase originating from Caldimonas taiwanensis On1. Biotechnol Prog 23:1312-1320.
Cheng, S.S., Chang, S.M., Chen, S.T. (2002) Effects of volatile fatty acids on a thermophilic anaerobic hydrogen fermentation process degrading peptone. Water Sci Technol 46:209-214.
Chiu, S.Y., Kao, C.Y., Chen, C.H., Kuan, T.C., Ong, S.C., Lin, C.S. (2008) Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresour Technol 99(9):3389-3396.
Chojnacka, K., Marquez-Rocha, F.J. (2004) Kinetic and stoichiometric relationships of the energy and carbon metabolism in the culture of microalgae. Biotechnology 3(1):21-34.
Danquah, M.K., Gladman, B, Moheimani, N., Forde, G.M. (2009) Micoralgal growth characteristics and subsequent influence on dewatering efficiency. Chem Eng J 151(1-3):73-78.
Das, D., Veziro?lu, T. N. (2001) Hydrogen production by biological processes: a sruvey of literature. Int J Hydrogen Energy 26:13-28.
Datar, R., Huang J., Maness P.C., Mohagheghi A. (2007) Hydrogen production from the fermentation of corn stover biomass pretreated with a steam-explosion process. Int J Hydrogen Energy 32:932-9399.
de Morais, M.G., Costa, J.A.V. (2007) Carbon dioxide fixation by Chlorella kessleri, C. vulgaris, Scenedesmus obliquus and Spirulina sp. cultivated in flasks and vertical tubular photobioreactors. Biotechnol Lett 29:1349-1352.
Deschamps, F.C., Ramos, L.P., and Fontana, J.D. (1996) Pretreatment of sugar cane bagasse for enhanced ruminal digestion. Appl Biochem Biotechnol 57/58:171-182.
DOEUS (2006) Breaking the biological barriers to cellulosic ethanol: a joint research Agenda, DOE/SC-0095 (US Department of Energy Office of Science and Office of Energy Efficiency and Renewable Energy, USA): www.doegenomestolife.org/biofuels/.
Dunn, S. (2002) Hydrogen futures: toward a sustainable energy system. Int J Hydrogen Energy 27:235-264.
Emtiazi, G., Nahvi, I. (2000) Multi-enzyme production by Cellulomonas sp. grown on wheat straw. Biomass and Bioenergy 19:31-37.
Endo, G., T. Noike, J. Matsumoto. (1982) Characteristics of cellulose and glucose decomposition in acidogenic phase of anaerobic digestion. Proc Soc Civ Engrs 325:61-68.
Fan, L.T., Gharpuray, M.M., and Lee, Y.H. (1987) Cellulose Hydrolysis, 3 (Springer-Verlag, Berlin, Germany) 1-68.
Fang, H.H.P., Zhu, H. and Zhang, T. (2006) Phototrophic hydrogen production from glucose by pure and co-cultures of Clostridium butyricum and Rhodobacter sphaeroides. Int J Hydrogen Energy 31:2223-2230
Fardeau, M.L., Faudon, C., Cayol, J.L., Magot, M., Patel, B.K.C. and Ollivier, B. (1996) Effect of thiosulphate as electron acceptor on glucose and xylose oxidation by Thermoanaerobacterfinnii and a Thermoanaerobacter sp. isolated from oil field water. Research in Microbiology 147(3):159-165.
Fascetti, E. and Todini, O. (1995) Rhodobacter sphaeroides RV cultivation and hydrogen production in a one- and two-stage chemostat. Appl Microbiol Biotechnol 44:300-305.
Fascetti, E., D'addario, E., Todini, O. and Robertiello, A. (1998) Photosynthetic hydrogen evolution with volatile organic acids derived from the fermentation of source selected municipal solid wastes. Int J Hydrogen Energy 23:753-760.
Ferchichi, M., Crabbe, E., Gil, G. H., Hintz, W., Almadidy, A. (2005) Influence of initial pH on hydrogen production from cheese whey. J Biotechnol 120:402-409.
Fuwa, H. (1954) A new method of microdetermination of amylase activity by the use of amylase as the substrate, J Biochem41:583-603.
Gest, H., Kamen, M.D. and Bregoff, H.M. (1950) Studies on the metabolism of photosynthetic bacteria. V. Photoproduction of hydrogen and nitrogen fixation by Rhodospirillum rubrum. J Biol Chem 182:153-170.
Ginkel, S.V., Sung, S. and Lay, J.J. (2001) Biohydrogen production as a function of pH and substrate concentration. Environ Sci Technol 35, 4726-4730.
Girbal, L., Croux, C., Vasconcelos, I. and Soucaille, P. (1995) Regulation of metabolic shift in Clostridium acetobutylicum ATCC 824. FEMS Microbiol Rev 17:287-297.
Gloe, A., Pfenning, N., Brockmann, H. and Trowitsh, W. (1975) A new bacterioichlorophyll from brown-colored chlorobiaceae. Arch Microbio 102:103-109.
Goldemberg, J. (2007) Ethanol for a Sustainable Energy Future. Science, 315(5813):808-810.
Goldemberg, J., and Johansson, T.B., (eds.), (2004) World Energy Assessment: Overview, 2004 Update, United Nations Development Programme, United Nations Department of Economic and Social Affairs, and World Energy Council, New York, 85
Gong, C.S., Cao, N.U., Du, J., and Tsao, G.T. (1999) Ethanol production by renewable sources, Adv Biochem Eng Biotechnol 65:207-241.
Gouveia, L., Marques, A.E., da Silva, T.L., Reis, A. (2009) Neochloris oleabundans UTEX#1185: a suitable renewable lipid source for biofuel production. Journal of Industrial Microbiology & Biotechnology 36(6):821-826.
Gouveia, L., Oliveira, A.C. (2009) Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol 36(2):269-274Gregory, M.B. (2006) Process economic considerations for production of ethanol from biomass feedstocks. Industrial Biotechnol 2:14-21.
Hallenbeck, P.C., Benemann, J.R. (2002) Biological hydrogen production: fundamentals and limiting processes. Int J Hydrogen Energy 27 (11-12):1185-1193.
Han, S.K., Shin, H.S. (2004) Biohydrogen production by anaerobic fermentation of food waste. Int J Hydrogen Energy 29:569-577.
Hatakka, A.I. (1983) Pretreatment of wheat straw by white-rot fungi for enzymatic saccharification of cellulose, Appl Microbiol Biotechnol 18:350-357.
Hata, J., Hua, Q., Yang, C., Shimizu, K., Taya, M. (2000) Characterization of energy conversion based on metabolic flux analysis in mixotrophic liverwort cells, Marchantia polymorpha. Biochemical Engineering Journal 6(1):56-74.Hawkes, F. R., Dinsdale, R., Hawkes, D. L., Hussy, I. (2002) Sustainable fermentative hydrogen production: challenges for process optimization. Int. J. Hydrogen Energy 27: 1339-1347 .
Hawkes, F.R., Hussy, I., Kyazze, G., Dinsdale, R., Hawkes, D.L. (2007) Continuous dark fermentative hydrogen production by mesophilic microflora: Principles and progress. Int J Hydrogen Energy 32 (2):172-184.
Hsueh, H.T., Chu, H., Yu, S.T. (2007) A batch study on the bio-fixation of carbon dioxide in the absorbed solution from a chemical wet scrubber by hot spring and marine algae. Chemosphere 66 (5):878-886.
Huang, G.H., Chen, F., Wei, D., Zhang, X.W., Chen, G. (2010) Biodiesel production by microalgal biotechnology. Applied Energy 87(1):38-46.
Illman, A.M., Scragg, A.H., Shales, S.W. (2000) Increase in Chlorella strains calorific values when grown in low nitrogen medium, Enzyme and Microbial Technology 27(8):631-635.
James, M.O., Judy, D.W. (1983) Photoproduction of H2 from cellulose by an anerobic bacterial coculture. Appl Environ Microbiol. 45(4):1300-1305.
Javed, M.M., Khan, T.S., and Haq, I. (2007) Sugar cane bagasse pretreatment: an attempt to enhance the production potential of cellulases by Humicola Insolens TAS-13. Electronic journal of environmental, agricultural and food chemistry 6:2290-2296.
Kadar, Z., Vrije, T.D., E, G., Noorden, V., Budde, M.A.W., Szengyel, Z., Reczey, K. and Claassen, P.A.M. (2004) Yields from Glucose, Xylose, and Paper Sludge Hydrolysate During Hydrogen Production by the Extreme Thermophile Caldicellulosiruptor saccharolyticus. Applied Biochemistry and Biotechnology 113-116(12):497-508.
Kapdan, I.K., Kargi, F. (2006) Bio-hydrogen production from waste materials. Enzyme Microb Technol 38:569–82.
Kargi, F., Kapdan, I. K. (2005) Biohydrogen production from waste materials. Proceedings International Hydrogen Energy Congress and Exhibition IHEC 2005.
Kataoka, N., Miya, A., Kiriyama, K. (1997) Studies on hydrogen production by continuous culture system of hydrogenproducing anaerobic bacteria. Water Sci Technol 36(6–7):41-47.
Kim, J.S., Ito, K. and Takahashi, H. (1981) Production of molecular hydrogen by Rhodopseudomonas sp. J Ferment Technol 59:185-190.
Kim, S., Dale, B.E., (2004) Global potential bioethanol production from wasted crops and crop residules. Biomass and Bioenergy 26, 361-375.
Kitajima, Y., El-Shishtawy, R.M.A., Ueno, Y., Otsuki, S., Miyake, J. and Morimoto, M. (1998) Analysis of compensation point of light using plane-type photosynthetic bioreactor. In: O. Zaborsky, Editor, Biohydrogen, Plenum Press, New York.
Koh, L.P., and Ghazoul J. (2008) Biofuels, biodiversity, and people: understanding the conflicts and finding opportunities. Biological Conservation 141: 2450-2460.
Koku, H., Ero?lu, ?., G?nd?z, U., Y?cel, M. and T?rker, L. (2002b) Kinetics of biological hydrogen production by Rhodobacter sphaeroides O.U. 001. Int J Hydrogen Energy 28: 381-388
Koku, H., Eroglu, I., G?nd?z, U., Y?cel, M., T?rker, L. (2002a) Aspects of the metabolism of hydrogen production by Rhodobacter sphaeroides. Int J Hydrogen Energy 27(11-12):1315-1329.
Kuhad, R.C., Singh, A., and Eriksson, K.E. (1997) Microorganisms enzymes involved in the degradation of plant fiber cell walls, Adv Biochem Eng Biotechnol. 57:45-125.
Kumar, A., Ergas, S., Yuan, X., Sahu, A., Zhang, Q., Dewulf, J., Malcata, F.X. and Langenhove, H.V. (2010) Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends in Biotechnology 28(7):371-380.
Kumar, N., Das, D. (2001) Continuous hydrogen production by immobilized Enterobacter cloacae IIT-BT 08 using lignocellulosic materials as solid matrices. Enzyme Microbial Technol 29:280-287.
Kumakura, M. (1997) Preparation of immobilized cellulase beads and their application to hydrolysis of cellulosic materials, Process Biochem 32:555-559.
Lackne, K.S. (2003) Climate Change: A guide to CO2 sequestration. Science 300:1677-1678.
Lay, J.J., Lee, Y.J., Noike, T. (1999) Feasibility of biological hydrogen production from organic fraction of municipal solid waste. Water Res 33(11):2579-2586.
Lee, C.M., Chen, P.C., Wang, C.C. and Tung, Y.C. (2002) Photohydrogen production using purple nonsulfur bacteria with hydrogen fermentation reactor effluent. Int J Hydrogen Energy 27:1309-1313.
Lee, J.W., Greenbaum, E. (1997) A new perspective on hydrogen production of photosynthetic water splitting. In: Saha BC, Woodward J, editors. Fuels and chemical for biomass, ACS Symposium Series, Washington: ACS. 666:209-222.
Lee, K.S., Lo, Y.S., Lo, Y.C., Lin, P.J., Chang, J.S. (2003) H2 production with anaerobic sludge using activated-carbon supported packed-bed bioreactors. Biotechnol Lett 25:133-138.
Lee, J.S. and Park S.C. (2010) Carbon dioxide fixation by microalgae. http://www.auric.or.kr 81-90
Lee, K.S., Wu J.F., Lo, Y.S., Lo Y.C., Lin, P.J., Chang, J. S. (2004) Anaerobic hydrogen production with an efficient carrier-induced granular sludge bed bioreactor. Biotechnol Bioeng 87:648-657.
Levin, D.B., Pitt, L., Love, M. (2004) Biohydrogen production: prospects and limitations to practical application. Int J Hydrogen Energy 29 (2):173-185.
Lewis, S.M., Montgomery, L., Garleb, K.A., Berger, L.L. and Fahey, G.C. Jr (1988) Effects of alkaline hydrogen peroxide treatment on in vitro degradation of cellulosic substrates by mixed ruminal microorganisms and Bacteroides succinogenes S85, Appl Environ Microbiol 54:1163-1169.
Li, Y., Horsman, M., Wu, N., Lan, C.Q. and Nathalie, D.C (2008) Biofuels from microalgae. Biotech Prog 24:815-820.
Liang, Y.N., Sarkany, N., Cui, Y. (2009) Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnology Letters 31(7):1043-1049.Lin, C.Y. and Lay, C.H. (2004) Effects of carbonate and phosphate concentrations on hydrogen production using anaerobic sewage sludge microflora. Int J Hydrogen Energy 29:275-281.
Lin, C.Y., Chang, R.C. (1999) Hydrogen production during the anaerobic acidogenic conversion of glucose. J Chem Technol Biotechnol 74(6):498-500.
Lindberg P, Sch?tz K, Happe T, Lindblad P. 2002. A hydrogen-producing, hydrogenase-free mutant strain of Nostoc punctiforme ATCC 29133. Int J Hydrogen Energy 27(11-12):1291-1296.
Liu, Y., Yu, P., Song, X., Qu, Y. (2008) Hydrogen production from cellulose by co-culture of Clostridium thermocellum JN4 and Thermoanaerobacterium thermosaccharolyticum GD 17. Int J Hydrogen Energy 33:2927-33.
Lo, Y.C., Chen, W.M., Hung, C.H., Chen, S.D., Chang, J.S. (2007) Dark H2 fermentation from sucrose and xylose using H2-producing indigenous bacteria: feasibility and kinetic studies. Water Res 42:827-847.
Lo, Y.C., Saratale, G.D., Chen, W.M., Bai, M.D., Chang, J.S. (2009) Isolation of cellulose-hydrolytic bacteria and applications of the cellulolytic enzymes for cellulosic biohydrogen production. Enzyme Microb Technol 44:417-425.
Lo, Y.C., Huang, C.Y., Fu, T.N., Chen, C.Y., and Chang, J.S. (2009) Fermentative hydrogen production from hydrolyzed cellulose substrate prepared with a thermophilic anaerobic bacterial isolate. Int J Hydrogen Energy 34 (15):6189-6200.
Lodhi, M.A.K. (1987) Hydrogen production from renewable sources of energy. Int J Hydrogen Energy 12:461-468.
Lopes Pinto, F.A., Troshina, O., Lindblad, P. (2002) A brief look at three decades of research on cyanobacterial hydrogen evolution. Int J Hydrogen Energy 27(11-12): 1209-1215.
Malina, J.F., Pohland, J.F.G. (1992) Design of anaerobic processes for the treatment of industrial and municipal wastes. Technomic Pub Co, USA
Mandal, S., Mallick, N. (2009) Microalga Scenedesmus obliquus as a potential source for biodiesel production. Applied Microbiology and Biotechnology 84(2):281-291.
Mata, T.M., Martins, A.A., Caetano, N.S. (2010) Microalgae for biodiesel production and other applications: A review, Renewable & Sustainable Energy Reviews 14(1):217-232.
Matthies, C., Kuhner, C.H., Acker, G. and Drake, H.L. (2001) Clostridium uliginosum sp. nov., a novel acid-tolerant, anaerobic bacterium with connecting filaments. Int J Syst Evol Microbiol 51(3):1119-1125.
Miller, G. L. (1959) Use of DinitrosaIicyIic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry 31:426-428
Miyake, J. (1998) The science of biohydrogen: An energetic view. In BioHydrogen. Zaborsky, OR Ed., Plenum Press: New York, 7-18.
Miyake, J., and Kawamura, S. (1987) Efficiency of light energy conversion to hydrogen by the photosynethic bacterium Rhodobacter sphaeroides. Int J Hydrogen Energy 12:147-149.
Miyake, J., Miyake, M., Asada, Y. (1999) Biotechnological hydrogen production: research for efficient light energy conversion. J Biotechnol 70:89-101.
Miyamoto, K. (1997) Renewable biological systems for alternative sustainable energy production, 1st edn. Food and Agriculture Organization of the United Nations.
Mizuno, O., Ohara, T., Shinya, M., Noike, T. (2000) Characteristics of hydrogen production from bean curd manufacturing waste by anaerobic microflora. Water Sci Technol 42:345-350.
Momirlan, M., and Veziroglu, T. (1999) Recent directions of world hydrogen production. Energy Rev 3:219-231.
Monserrate, E., Leschine, S.B. and Ercole, C.P. (2001) Clostridium hungatei sp. nov., a mesophilic, N2-fixing cellulolytic bacterium isolated from soil. Int J Syst Evol Microbiol 51(1):123-132.
Mosey, F.E., Fernandes, X.A. (1989) Patterns of hydrogen in biogas from the anaerobic digestion of milk-sugars. Water Sci Tech 21:187-196.
Moxley G. and Zhang Y.H.P. (2007) More accurate determination of acid-labile carbohydrates in lignocellulose by modified quantitative saccharification. Energy Fuels 21:3684-3688.
Moxley, G., Zhu, Z., Percival Zhang, Y. H. (2008) Efficient sugar release by the cellulose solvent-based lignocellulose fractionation technology and enzymatic cellulose hydrolysis. J. Agric. Food Chem 56:7885-7890.
Nath, K., Muthukumar, M., Kumar, A., Das, D. (2008) Kinetics of two stage fermentation process for the production of hydrogen. Int J Hydrogen Energy 33(4):1195-1203.
Neftel, A., Oeschger, H., Schwander, J., Stauffer, B. and Zumbrunn, R. (1982) Ice core sample measurements give atmospheric CO2 content during the past 40,000 yr. Nature 295:220-223
Nitisinprasert, S., Temmes, A., (1991) The characteristics of a new non-spore-forming cellulolytic mesophilic anaerobe strain CMC126 isolated from municipal sewage sludge. J Appl Bacteriol 71:154-161.
Nokie, T., Mizuni, O. (2000) Hydrogen fermentation of organic municipal wastes. Water Sci Technol 42:155-162.
Nowak, J., Florek, M., Kwiatek, W., Lekki, J., Chevallier, P., Zieba, E. (2005) Composite structure of wood cells in petrified wood, Mater Sci Eng 25:119-130.
Odom, J.M., and Wall, J.D. (1983) Photoreduction of H2 from cellulose by an anaerobic bacterial coculture, Appl Environ Microbiol 45:1300-1395.
Ogbonna, J.C., Ichige, E., Tanaka, H. (2002) Regulating the ratio of photoautotrophic to heterotrophic metabolic activites in photoheterotrophic culture of Euglena gracilis and its application to alpha-tocopherol production. Biotechnology Letters 24(12):953-958.
Okamoto, M., Miyahara, T., Mizuno, O., Noike, T. (2000) Biological hydrogen potential of materials characteristic of the organic fraction of municipal solid wastes. Water Sci Technol 41:25-32.
Packer, M. (2009) Algal capture of carbon dioxide; biomass generation as a tool for greenhouse gas mitigation with reference to New Zealand energy strategy and policy. Energy Policy, doi:10.1016/j.enpol.2008.12.025.
Ragauskas, A.J., Williams, C.K., Davison, B.H., Britovsek, G.,Cairney, J., Eckert, C.A., Frederick, W.J.J.R., Hallett, J.P., Leak, D.J., and Liotta, C.L. (2006) The path forward for biofuels and biomaterials, Science 311:484-489.
Rajoka, I.M., and Malik, A.K. (1997) Cellulase production by Cellulomonas biazotea cultured in media containing different cellulosic substrates, Biores Technol, 59:21-27.
Rao, K.K., Hall, D.O. (1996) Hydrogen production by cyanobacteria: potential, problems and prospects. J Mar Biotechnol 4:10-15.
Raoof, B., Kaushik, B.D., Prasanna, R. (2006) Formulation of a low-cost medium for mass production of Spirulina. Biomass and Bioenergy 30 (6):537-542.
Redwood, M.D., Macaskie, L.E. (2006) A two-stage, two-organism process for biohydrogen from glucose. Int J Hydrogen Energy,31(11):1514-1521.
Rosen, M.A. and Scott, D.S. (1998) Comparative efficiency assessments for a range of hydrogen production processes. Int J Hydrogen Energy 23:653-659.
Saratale, G.D., Chen, S.D., Lo, Y.C., Saratale, R.G., and Chang, J.S. (2008) Outlook of biohydrogen production from lignocellulosic feedstock using dark fermentation-a review. Journal of Scientific & Industrial Research 67:962-979.
Sastri, M.V.C. (1989) India's hydrogen energy program-A status report. Int J Hydrogen Energy 14:507-513
Schmidt, J.E., Ahring, B.K. (1996) Granular sludge formation in upflow anaerobic sludge blanket (UASB) reactors. Biotechnol Bioeng 49(3):229-246.
Schubert, C. (2006) Can biofuels finally take center stage?, Nat Biotechnol, 24:777-784.
Schurz, J., and Ghose, T.K. (1978) Bioconversion of Cellulosic Substances into Energy Chemicals and Microbial Protein Symp Proc (IIT, New Delhi) 37.
Shi, X.Y., Yu, H.Q. (2006) Continuous production of hydrogen from mixed volatile fatty acids with Rhodopseudoomonas capsulata. Int J Hydrogen Energy 31(4):1641–1647.
Shoko, E., McLellan, B., Dicks, A.L. and C., D.d.C.J. (2006) Hydrogen from coal: Production and utilisation technologies. Int J Coal Geology 65:213-222.
Singh, A., and Hayashi, K. (1995) Microbial cellulase, protein architecture, molecular properties and biosynthesis, Adv Appl Microbiol 40:1-44.
Sivers, M.V., and Zacchi, G. (1995) A techno-economical comparison of three processes for the production of ethanol from pine, Biores Technol 51:43-52.
Smith, G.D., Ewart, G.D., Tucker, W. (1992) Hydrogen production by cyanobacteria. Int J Hydrogen Energy 17:695-698.
Solovchenko, A.E., Khozin-Goldberg, I., Didi-Cohen, S., Cohen, Z., Merzlyak, M.N. (2008) Effect of light intensity and nitrogen starvation on growth, total fatty acids and arachidonic acid in the green microalga Parietochloris incise. J Appl Phycol 20(3):245-251.
Spolaore, P., Joannis-Cassan, C., Duran, E., Isambert, A. (2006) Commercial applications of microalgae. Journal of Bioscience and Bioengineering 101 (2):87-96.
Stiegel, G.J. and Ramezan, M. (2006) Hydrogen from coal gasification: An economical pathway to a sustainable energy future. Int J Coal Geology 65:173-190.
Sun, N., Wang, Y., Li, Y.T., Huang, J.C., Chen, F. (2008) Sugar-based growth, astaxanthin accumulation and carotenogenic transcription of heterotrophic Chlorella zofingiensis (Chlorophyta). Process Biochemistry 43(11):1288-1292.
Tabita, F.R. (1995) The biochemistry and metabolic regulation of carbon metabolism and CO2 fixation in purple bacteria. In: R.E. Blankenship, M.T. Madigan and C.E. Bauer, Editors, Anoxygenic photosynthetic bacteria, Kluwer Academic Publishers, The Netherlands 885-914.
Tabita, F.R. (2009) The hydroxypropionate pathway of CO2 fixation: Fait accompli. Proc Natl Acad Sci USA 106(50):21015-21016.
Taguchi, F., Yamada, K., Hasegawa, K., Taki-Saito, T., Hara, K. (1996) Continuous hydrogen production by Clostridium sp. strain No. 2 from cellulose hydrolysate in an aqueous two-phase system. J Ferment Bioengineering 82:80-83.
Tamagnini, P., Axelsson, R., Lindberg, P., Oxelfelt, F., Wuschiers, R., Lindblad, P. (2002) Hydrogenases and hydrogen metabolism of cyanobacteria. Microbiol Mol Biol Rev 66:1-20.
Tanisho, S., Ishiwata, Y. (1995) Continuous hydrogen production from molasses by fermentation using urethane foam as a support of flocks. Int J Hydrogen Energy 20: 541-545.
Tao, Y., Chen, Y., Wu, Y., He, Y., Zhou, Z. (2006) High hydrogen yield from a two-step process of dark- and photo-fermentation of sucrose. Int J Hydrogen Energy 32(2):200-206.
Tian, X., Liao, Q., Liu, W., Wang, Y.Z., Zhu, X., Li, J., Wang, H. (2009) Photo-hydrogen production rate of a PVA-boric acid gel granule containing immobilized photosynthetic bacteria cells. Int J Hydrogen Energy 34 (11):4708-4717.
Ueno, Y., Otsuka, S., Morimoto, M. (1996) Hydrogen production from industrial wastewater by anaerobic microflora in chemostat culture. J Ferment Bioeng 82: 94-197.
Van Ginkel, S., Sung, S., Lay, J.J. (2001) Biohydrogen production as a function of pH and substrate concentration. Environ Sci Technol 35:4726-4730.
Walter S. and Schrempf H. (1996) Physiological studies of cellulase (Avicelase) synthesis in Streptomyces reticuli. Appl Environ Microbiol 62:1065-1069.
Wang, B., Li, Y.Q., Wu, N., Lan, C.Q. (2008a) CO2 bio-mitigation using microalgae. Applied Microbiology and Biotechnology 79(5):707-718.
Wang, C. C., Chang, C. W., Chu, C. P., Lee, D. J., Chang, B. V., Liao, C. S. (2003) Producing hydrogen from wastewater sludge by Clostridium bifermentans. J Biotechnol 102:83-92.
Wang, C.H., Lin, P.J., Chang, J.S. (2006) Fermentative conversion of sucrose and pineapple waste into hydrogen gas in phosphate-buffered culture seeded with municipal sewage sludge. Process Biochemistry 41 (6):1353-1358.
Wang, X.Y., Jin, B., Mulcahy, D. (2008) Impact of carbon and nitrogen sources on hydrogen production by a newly isolated Clostridium butyricum W5. Int J Hydrogen Energy 33 (19):4998-5005.
Warnick, T.A., Methe, B.A. and Leschine, S.B. (2002) Clostridium phytofermentans sp. nov., a cellulolytic mesophile from forest soil. Int J Syst Evol Microbiol 52(4):1155-1160.
Wu, J.-H., Lin, C.-Y. (2004) Biohydrogen production by mesophilic fermentation of food wastewater. Water Sci Technol 49:223-228.
Xia, L.M., Sheng, X.L., (2004) High-yield cellulase production by Trichoderma reesei ZU-02 on corncob residues. Bioresour Technol 91:259-262.
Xiong, W., Li, X.F., Xiang, J.Y., Wu, Q.Y. (2008) High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Applied Microbiology and Biotechnology 78(1):29-36.
Xu, H., Miao, X.L., Wu, Q.Y. (2006) High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. Journal of Biotechnology 126(4):499-507.
Yang, P., Zhang, R., McGarvey, J.A., Benemann, J.R. (2007) Biohydrogen production from cheese processing wastewater by anaerobic fermentation using mixed microbial communities. Int J Hydrogen Energy 32 (18):4761-4771.
Yokoi, H., Saitsu, A., Uchida, H., Hirose, J., Hayashi, S., Takasaki, Y. (2001) Microbial hydrogen production from sweet potato starch residue. J Biosci Bioeng 91(1):58–63.
Yokoi, H., Tokushige, T., Hirose, J., Hayashi, S., Takasaki, Y. (1998) H2 production from starch by a mixed culture of Clostridium butyricum and Enterobacter aerogenes. Biotechnol Lett 20:143-147.
Yoo, C., Jun, S.Y., Lee, J.Y., Ahn, C.Y., Oh, H.M. (2010) Selection of microalgae for lipid production under high levels carbon dioxide. Bioresour Technol 101:S71-S74
Yoo, Y.J., Hong, J., Hatch, R.T. (1987) Comparison of a-amylase activities from different assay methods. Biotechnol Bioeng 30(1):147-151.
Yoshihara, K.I., Nagase, H., Eguchi, K., Hirata, K., Miyamoto, K. (1996) Biological elimination of nitric oxide and carbon dioxide from flue gas by marine microalga NOA-113 cultivated in a long tubular photobioreactor, . J Ferment Bioeng 82 (4):351-4.
Yu, H., Zhu, Z., Hu, W., Zhang, H. (2002) Hydrogen production from rice winery wastewater in an upflow anaerobic reactor by using mixed anaerobic cultures. Int J Hydrogen Energy 27:1359-1365.
Yu, K.M. and Lee, C.M. (2003) The study of limiting factor for the photo-hydrogen production with purple non-sulfate bacterium. Master's Thesis. Department of Biochemistry, National Chung Hsing University, Taiwan.
Yuan, X., Wang, M., Kumar, A., Sahu, A.K., Ergas, S.J., Park, C. (2010) Growth of microalgae using wastewater for anaerobic co-digestion. 7th IWA Leading-Edge Conference on Water and Wastewater Technologies, June 2–5, Phoenix, AZ
Zeng, A.P., Ross, A., Biebl, H., Tag, C., (2004) G?nzel, B., Deckwer, W. D. Multiple product inhibition and growth modeling of Clostridium butyricum and Klebsiella pneumoniae in glycerol fermentation. Biotechnology and Bioengineering 44(8):902-911
Zhang, T., Liu, H., Fang, H. H. P. (2003) Biohydrogen production from starch in wastewater under thermophilic condition. J Environ Manage 6:149-156.
Zhang, Y.H.P., and Lynd, L.R. (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulase systems, Biotechnol Bioeng 88:797-824.
Zhao, Y., Wang, Y., Zhu, J.Y., Ragauskas, A., and Deng, Y. (2008) Enhanced enzymatic hydrolysis of Spruce by alkaline pretreatment at low temperature. Biotechnol Bioeng 99:1320-1328.
Zhu, H., Suzuki, T., Tsygankov, A. A., Asada, Y., Miyake, J. (1999) Hydrogen production from tofu wastewater by Rhodobacter sphaerodies immobilized in agar gels. Int J Hydrogen Energy 24:305-310.
Zhu, Y. and Yang, S.T. (2004) Effect of pH on metabolic pathway shift in fermentation of xylose by Clostridium tyrobutyricum. J Biotechnol 110(2):143-157.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊