跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/03/18 11:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:羅文成
研究生(外文):Wen-ChengLo
論文名稱:以膠體合成法製備CuInSe2、CuInxGa1-xSe2(CIGS)、CuGaSe2奈米粒子及CIGS薄膜製程研究
論文名稱(外文):Colloidal Synthesis of CuInSe2, CuInxGa1-xSe2 (CIGS), CuGaSe2 Nanoparticles and Study on the Preparation Process of CIGS Film
指導教授:吳天賞吳天賞引用關係
指導教授(外文):Tian-Shung Wu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學系碩博士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:83
中文關鍵詞:銅銦鎵硒?米?子膠體合成法溼式球磨法太陽能電池
外文關鍵詞:CIGSnanoparticlecolloidal methodwet-ball-milling methodsolar cell
相關次數:
  • 被引用被引用:0
  • 點閱點閱:680
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗以氯化亞銅、氯化銦、氯化鎵和硒粉為反應物,十八油胺為溶劑,藉由膠體合成法在氮氣環境下成功製備出CuInSe2、CuInxGa1-xSe2(CIGS)和CuGaSe2奈米粒子,並探討反應物濃度、反應時間和反應溫度對於奈米粒子型態與組成的影響,利用XRD、TEM、UV-VIS-NIR和EDS等工具分析奈米粒子的結晶結構、形狀、粒徑大小、光學性質以及成份組成比例。
本文提出以非真空製程的塗佈方法製備CIGS薄膜吸收層,可簡化CIGS薄膜生產製程及降低設備投資成本,CIGS合金粉體利用濕式球磨方式製得穩定的CIGS奈米溶液,將此溶液直接塗佈在已濺鍍鉬的鈉玻璃基板上製作CIGS薄膜太陽光吸收層,探討在溼式球磨中磨珠用量對於CIGS薄膜均勻度的影響,利用α-step量測CIGS薄膜厚度及均勻度,並且組裝成太陽能電池元件,測得光電轉換效率為0.008 %。

The CuInSe2, CuInxGa1-xSe2(CIGS) and CuGaSe2 nanoparticles were successfully prepared through colloidal method under nitrogen automosphere condition by using copper chlorides, indium chlorides, gallium chlorides, Se powder as precursors, and oleylamine as solvent. We discussed the effects of reactants concentration, reaction time and temperature on the morphology and composition of nanoparticles. Analysis crystal structure, shape, particle size, optical property and composition of nanoparticles by using XRD, TEM, UV-VIS-NIR and EDS.
In this study, a non-vacuum process for coating the CIGS thin film is proposed to simplify the production process and reduce the investment costs. The CIGS alloy powder can be further grinded to a stable CIGS nanoparticles solution by wet-ball-milling method, the solution coating on Soda Lime glass that has been sputtering of molybdenum as CIGS thin film absorbing layer, we discussed the amount of beads in the wet-ball-milling for impact the uniformity of CIGS thin film. The thickness and uniformity of CIGS thin film were measured by using α-step instrument. In practical, the CIGS thin film was assembled into a solar cell, the photoelectric conversion efficiency is about 0.008 %.

中文摘要 I
Abstract II
誌謝 III
目錄 IV
表目錄 VII
圖目錄 VIII
第一章 緒論 1
1.1 前言 1
1.2 太陽能電池的發展及種類 1
1.2.1 結晶矽太陽能電池 3
1.2.2 薄膜太陽能電池 4
1.2.3 染料敏化太陽能電池 5
1.3 研究動機及目的 6
第二章 理論基礎與文獻回顧 7
2.1 太陽能電池原理 7
2.2 CIGS薄膜太陽能電池 9
2.2.1 CIGS薄膜太陽能電池介紹 9
2.2.2 CIGS薄膜非真空製程技術 10
2.2.3 CIS/CIGS材料的基本性質 11
2.3 奈米粒子製備 14
2.3.1水熱法 15
2.3.2溶膠凝膠法 15
2.3.3共沉澱法 16
2.3.4膠體合成法 16
2.3.5 Ⅰ-Ⅲ-Ⅵ族奈米粒子製備 17
2.4 研磨及分散技術介紹 26
2.5 表面粗糙度表示法及定義介紹 30
第三章 藥品儀器設備與實驗方法介紹 32
3.1 化學藥品 32
3.2 儀器設備 33
3.2.1 X-Ray粉末繞射儀(XRD) 33
3.2.2 穿透式電子顯微鏡(TEM) 34
3.2.3掃描式電子顯微鏡(SEM) 35
3.2.4 能量散佈光譜儀(EDS) 35
3.2.5 紫外光-可見光-近紅外光吸收光譜儀(UV-VIS-NIR) 36
3.2.6 膜厚測量儀(α-step) 37
3.3 CuInSe2、Cu(InxGa1-x)Se2、CuGaSe2奈米粒子的製備 38
3.3.1 膠體合成法A 38
3.3.2 膠體合成法B 40
3.4 CIGS奈米溶液漿料的製備 43
3.5 基板的清洗與薄膜的塗佈、乾燥處理 44
3.5.1 玻璃基板的清洗 44
3.5.2 薄膜的塗佈、乾燥處理 44
第四章 結果與討論 47
4.1 膠體合成法A 47
4.2 膠體合成法B 53
4.2.1 CuInSe2的製備反應時間比較 53
4.2.2 CuInSe2的製備反應溫度比較 59
4.2.3 CuInSe2的製備反應物濃度比較 60
4.2.4 CuInXGa1-XSe2的製備 63
4.3 非真空CIGS薄膜塗佈製程分析 69
第五章 結論 76
參考文獻 77
附錄 83

1. A. E. Becquerel, “ Recherches sur les effects de la radiation chimique de la lumi?re solaire, au moyen des courants ?lectriques, C R Acad. Sci. 1839, 9, 145-149
2. M. Gr?tzel, “Photoelectrochemical cells, Nature 2001, 414, 338-344
3. M. Gr?tzel, “Powering the planet, Nature 2000, 403, 363
4.黃建昇,結晶矽太陽電池發展近況,工業材料雜誌,2003年,203期,pp.150-150。
5. L. Antonio, H. Steven, Handbook of photovoltaic Science and Enginnering, 2004.
6. H. W. Schock, “Thin film photovoltaics, Applied Surface Science, 1996, 92, 606-616.
7. K. Ramanathan, M.A. Contreras, C. L. Perkins, S. Asher, F. A. Hasoon, J. Keane, D. Young, M. Romero, W.Metzger, R. Noufi, J. Ward, A. Duda, “Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells, Prog. Photovolt. Res. Appl., 2003, 11, 225-230.
8. H. Tsubomura, M. Matsumura, Y. Nomura, T. Amamiya, “Dye sensitised zinc oxide: Aqueous electrolyte: Platinum photocell, Nature 1976, 261, 402-403.
9. B. O. Regan, M. Gr?tzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, 1991, 353, 737-740.
10. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, M. Gr?tzel, “Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes, J. Am. Chem. Soc., 1993, 115, 6382-6390.
11. M. Gr?tzel, “Perspectives for dye-sensitized nanocrystalline solar cells, Prog. Photovolt: Res. Appl., 2000, 8(1), 171-185.
12. 黃惠良、曾百亨等,太陽電池,五南圖書出版股份有限公司,2008年。
13. 科學發展月刊,2002年,349期,pp.23-29。
14. L. Kazmerski, F. White, G. Morgan, “Thin-film CuInSe2/CdS heterojunction
solar cells, Appl. Phys. Lett. 1976, 29, 268 -270.
15.R. Noufi, K. Zweibel, “High-Efficiency CDTE and CIGS Thin-Film Solar Cell, Record of the 4th IEEE World Photovoltaic Energy Conversion Conference, 2006, 1, 317-320.
16. M. Fortman, T. Zhou, C. Malone, M. Gunes, R. Wronski, “Deposition conditions, hydrogen content and the Staebler-Wronski effect in amorphous silicon, Conference record of the 21st photovoltaic specialist conference, 1990, 2, 1648-1652.
17. 物理雙月刊, 2007年,3期,pp.625-634。
18. J. A. AbuShama, S. Johnston, R. Ahrenkiel, R. Crandall, D. Young, R. Noufi, “Evolution of Electronic Properties of (Cu(In,Ga)Se2 (CIGS)-Based Solar Cells During a 3-Stage Growth Process: Preprint, NREL Confence Paper, 2003, 520, 21-25.
19. M. A. Contreras, K. Ramanathan, J. AbuShama, F. Hasoon, D.L. Young, B. Egaas, R. Noufi, “Diode characteristics in state-of-the-art ZnO/CdS/Cu(In1-xGax)Se2 solar cells, Prog. Photovolt: Res. Appl., 2005, 13, 209-216.
20. 邱秋燕等,銅絪鎵硒(CIGS)太陽能電池-非真空製程技術發展簡介,工業材料, 2008年,264期,pp.79-88。
21. M. L. Fearheiley, “The phase relations in the Cu,In,Se system and the growth of CuInSe2 single crystals, Sol. Cells, 1986, 16, 91-100 .
22. H. J. Muller, “Semiconductors for Solar Cells Artech House, Boston, 1993.
23. Y. D. Li, H. Liao, Y. Fan, L. Li and Y. T. Qian, “A Solvothermal Synthetic Route to CdE (E= S, Se) Semiconductor Nanocrystalline, Mater. Chem. Phys., 1999, 58, 87-89.
24. K. M. Reddy, D. Guin, S. V. Manorama, A. R. Reddy Selective synthesis of nanosized TiO2 by hydrothermal route: Characterization, structure property relation, and photochemical application, Mater. Res. Soc., 2004, 19, 2567-2575.
25. A. I. Becerro, M. Naranjo, A. C. Perdig?n, J. M. Trillo, Hydrothermal Chemistry of Silicates: Low-Temperature Synthesis of y-Yttrium Disilicate, J. Am. Ceram. Soc., 2004, 86, 1592-1594.
26.O. Lupan, L. Chowa, G. Chai, H. Heinrich, S. Park, A. Schulte, Synthesisofone-dimensional SnO2 nanorods via a hydrothermal technique, Phy. Rev. E., 2009, 41, 533-536.
27. J. Q. Hu, Q. Y. Lu, K. B. Tang, B. Deng, R. R. Jiang, Y. T. Qian, W. C. Yu, G. E. Zhou, X. M. Liu, J. X. Wu, Synthesis and Characterization of SiC Nanowires through a Reduction-Carburization Route, J. Phys. Chem. B, 2000, 104, 5251-5254.
28. G. S. Wu, T. Xiea, X. Y. Yuana, B. C. Chenga, L. D. ZhangaAn, improved sol–gel template synthetic route to large-scale CeO2 nanowires, Mater. Res. Bull., 2004, 39, 1023-1028.
29. P. A. Tanner, P. T. Law, K. L. Wong, L. Fu, Preformed sol-gel synthesis and characterization of YAlO3, J. Mater. Sci., 2003, 38, 4857-4861.
30. J. Shen, Z. Zhang, G. Wu, Preparation and Characterization of Polyurethane Doped with Nano-sized SiO2 Derived from Sol-Gel Process, J. Chem. Eng. Jpn. , 2003, 36, 1270-1275.
31. C. F. Perdomo, E.R. Figueroa, J. R. Paez, “BaTiO3 obtatined by coprecipitation method, Dyna-Colombia, 2009, 155, 75, 223-230.
32. A. Vos, J. Mullens, J. Yperman, D. Franco, L. G. Vanpoucke, “the preparation of PbTiO3 using the oxalate coprecipitation method, Eur. J. Solid State Inorg. Chem., 1993, 30, 10, 929-941.
33. A. V. Murugan, V. Samuel, S. C. Navale, V. Ravi, “Phase evolution of NiTiO3 prepared by coprecipitation method, Mater. Lett., 2006, 60, 15, 1791-1792.
34. C. B. Murray, D. J. Norris, M. G. Bawendi , Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites, J. Am. Chem. Soc., 1993, 115, 8706–8715.
35. W. W. Yu, X. Peng, Formation of High-Quality CdS and Other II-VI Semiconductor Nanocrystals in Noncoordinating Solvents: Tunable Reactivity of Monomers, Angew. Chem. Int. Ed., 2002, 41, 2368-2371.
36. M. Shim, P. Guyot-Sionnest, Organic-Capped ZnO Nanocrystals: Synthesis and n-Type Character, J. Am. Chem. Soc., 2001, 123, 11651-11654.
37. W. W. Yu, Y. A. Wang, X. Peng, Formation and Stability of Size-, Shape-, and Structure-Controlled CdTe Nanocrystals: Ligand Effects on Monomers and Nanocrystals, Chem. Mater., 2003, 15, 4300-4308.
38. P. Jongnam, J. Jin, K. G. Soon, J. Youngjin, H. Taeghwan, Synthesis of Monodisperse Spherical Nanocrystals, Angew. Chem. Int. Ed., 2007, 46, 4630-4660.
39. B. Li, Y. Xie, J. Huang, Y. Qian, “Synthesis by a solvothermal route and characterization of CuInSe2 nanowhiskers and nanoparticles, Adv. Mater., 1999, 11, 1456-1459.
40. Y. Jiang, Y. Wu, X. Mo, W. Yu, Y. Xie, Y. Qian, “Elemental Solvothermal Reaction To Produce Ternary Semiconductor CuInE2 (E = S, Se) Nanorods, Inorg. Chem., 2000, 39, 2964-2965.
41. Y.-G. Chun, K.-H. Kim, K.-H. Yoon, “Synthesis of CuInGaSe2 nanoparticles by solvothermal route, Thin Solid Films, 2005, 480-481, 46-49.
42. K.-H. Kim, Y.-G. Chun, B.-O. Paek, K.-H. Yoon, “Synthesis and Characterization of Cux(In,Ga)ySez Nanoparticles by Colloidal Route, Mater. Res. Soc. Symp. Proc., 2005, 836, 1-6.
43.K.-H. Kim, Y.-G. Chun, K.-H. Yoon, “Synthesis of CuInGaSe2 Nanoparticles by Low Temperature Colloidal Route, Journal of Mechanical Science and Technology , 2005, 19, 2085-2090.
44. S.-H Choi, E.-G. Kim, T. Hyeon, “One-Pot Synthesis of Copper?Indium Sulfide Nanocrystal Heterostructures with Acorn, Bottle, and Larva Shapes, J. Am. Chem. Soc., 2006, 128, 2520-2521.
45. J. Tang, S. Hinds, S. O. Kelley, E. H. Sargent, “Synthesis of Colloidal CuGaSe2, CuInSe2, and Cu(InGa)Se2 Nanoparticles, Chem. Mater., 2008, 20. 6906-6910.
46. C. Bernhard, E. Reinsch and K. Hisemann, “The Influence of Suspension Properties on Ultra-fine Grinding in Stirred Ball Mills, Powder Technology, 1999, 105, 357-361.
47.賴耿陽,“工業分散技術,復漢出版社,1994年。
48. J. C. Su, S.Y. Liang, W. L. Liu, T. C. Jan., “Ceramic Micro/Nanoparticle Size Evolution in Wet Grinding in Stirred Ball Mill, Journal of Manufacturing Science and Engineering, 2004, 126, 779-786.
49. M. Gao, E. Forssberg, “Prediction of Product Size Distributions for a Stirred Ball Mill, Journal of Powder Technology, 1995, 84, 101-106.
50. T. H. Hou, C. H. Su, W. L. Liu , “Setting the Optimal Parameters for a Nano-particle Milling Process, Proceedings of the 14th Industrial Engineering Research Conference(IERC), 2005, 1-6.
51. T. H. Hou, C. H. Su, W. L. Liu, “Parameters Optimization of a Nano-Particle Wet Milling Process Using the Taguchi Method, Response Surface Method and Genetic Algorithm, Journal of Powder Technology, 2007, 173, 153-162.
52. 姜俊賢、陳長成、李正治、卓漢明、李振發,精密量具及機件檢驗,文京圖書,1993年,pp.563-576。
53. 劉旺林,CIGS薄膜太陽能光電能材料奈米化及非真空式製程之研究,彰化師範大學電機工程學系博士論文,2008年。
54. H. Zhang, J. F. Banfield, “New kinetic model for the nanocrystalline anatase-to-rutile transformation revealing rate depending on number of particles, American Mineralogist, 1999, 84, 528-535.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top