1. A. E. Becquerel, “ Recherches sur les effects de la radiation chimique de la lumi?re solaire, au moyen des courants ?lectriques, C R Acad. Sci. 1839, 9, 145-149
2. M. Gr?tzel, “Photoelectrochemical cells, Nature 2001, 414, 338-344
3. M. Gr?tzel, “Powering the planet, Nature 2000, 403, 363
4.黃建昇,結晶矽太陽電池發展近況,工業材料雜誌,2003年,203期,pp.150-150。5. L. Antonio, H. Steven, Handbook of photovoltaic Science and Enginnering, 2004.
6. H. W. Schock, “Thin film photovoltaics, Applied Surface Science, 1996, 92, 606-616.
7. K. Ramanathan, M.A. Contreras, C. L. Perkins, S. Asher, F. A. Hasoon, J. Keane, D. Young, M. Romero, W.Metzger, R. Noufi, J. Ward, A. Duda, “Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells, Prog. Photovolt. Res. Appl., 2003, 11, 225-230.
8. H. Tsubomura, M. Matsumura, Y. Nomura, T. Amamiya, “Dye sensitised zinc oxide: Aqueous electrolyte: Platinum photocell, Nature 1976, 261, 402-403.
9. B. O. Regan, M. Gr?tzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, 1991, 353, 737-740.
10. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, M. Gr?tzel, “Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes, J. Am. Chem. Soc., 1993, 115, 6382-6390.
11. M. Gr?tzel, “Perspectives for dye-sensitized nanocrystalline solar cells, Prog. Photovolt: Res. Appl., 2000, 8(1), 171-185.
12. 黃惠良、曾百亨等,太陽電池,五南圖書出版股份有限公司,2008年。
13. 科學發展月刊,2002年,349期,pp.23-29。
14. L. Kazmerski, F. White, G. Morgan, “Thin-film CuInSe2/CdS heterojunction
solar cells, Appl. Phys. Lett. 1976, 29, 268 -270.
15.R. Noufi, K. Zweibel, “High-Efficiency CDTE and CIGS Thin-Film Solar Cell, Record of the 4th IEEE World Photovoltaic Energy Conversion Conference, 2006, 1, 317-320.
16. M. Fortman, T. Zhou, C. Malone, M. Gunes, R. Wronski, “Deposition conditions, hydrogen content and the Staebler-Wronski effect in amorphous silicon, Conference record of the 21st photovoltaic specialist conference, 1990, 2, 1648-1652.
17. 物理雙月刊, 2007年,3期,pp.625-634。
18. J. A. AbuShama, S. Johnston, R. Ahrenkiel, R. Crandall, D. Young, R. Noufi, “Evolution of Electronic Properties of (Cu(In,Ga)Se2 (CIGS)-Based Solar Cells During a 3-Stage Growth Process: Preprint, NREL Confence Paper, 2003, 520, 21-25.
19. M. A. Contreras, K. Ramanathan, J. AbuShama, F. Hasoon, D.L. Young, B. Egaas, R. Noufi, “Diode characteristics in state-of-the-art ZnO/CdS/Cu(In1-xGax)Se2 solar cells, Prog. Photovolt: Res. Appl., 2005, 13, 209-216.
20. 邱秋燕等,銅絪鎵硒(CIGS)太陽能電池-非真空製程技術發展簡介,工業材料, 2008年,264期,pp.79-88。
21. M. L. Fearheiley, “The phase relations in the Cu,In,Se system and the growth of CuInSe2 single crystals, Sol. Cells, 1986, 16, 91-100 .
22. H. J. Muller, “Semiconductors for Solar Cells Artech House, Boston, 1993.
23. Y. D. Li, H. Liao, Y. Fan, L. Li and Y. T. Qian, “A Solvothermal Synthetic Route to CdE (E= S, Se) Semiconductor Nanocrystalline, Mater. Chem. Phys., 1999, 58, 87-89.
24. K. M. Reddy, D. Guin, S. V. Manorama, A. R. Reddy Selective synthesis of nanosized TiO2 by hydrothermal route: Characterization, structure property relation, and photochemical application, Mater. Res. Soc., 2004, 19, 2567-2575.
25. A. I. Becerro, M. Naranjo, A. C. Perdig?n, J. M. Trillo, Hydrothermal Chemistry of Silicates: Low-Temperature Synthesis of y-Yttrium Disilicate, J. Am. Ceram. Soc., 2004, 86, 1592-1594.
26.O. Lupan, L. Chowa, G. Chai, H. Heinrich, S. Park, A. Schulte, Synthesisofone-dimensional SnO2 nanorods via a hydrothermal technique, Phy. Rev. E., 2009, 41, 533-536.
27. J. Q. Hu, Q. Y. Lu, K. B. Tang, B. Deng, R. R. Jiang, Y. T. Qian, W. C. Yu, G. E. Zhou, X. M. Liu, J. X. Wu, Synthesis and Characterization of SiC Nanowires through a Reduction-Carburization Route, J. Phys. Chem. B, 2000, 104, 5251-5254.
28. G. S. Wu, T. Xiea, X. Y. Yuana, B. C. Chenga, L. D. ZhangaAn, improved sol–gel template synthetic route to large-scale CeO2 nanowires, Mater. Res. Bull., 2004, 39, 1023-1028.
29. P. A. Tanner, P. T. Law, K. L. Wong, L. Fu, Preformed sol-gel synthesis and characterization of YAlO3, J. Mater. Sci., 2003, 38, 4857-4861.
30. J. Shen, Z. Zhang, G. Wu, Preparation and Characterization of Polyurethane Doped with Nano-sized SiO2 Derived from Sol-Gel Process, J. Chem. Eng. Jpn. , 2003, 36, 1270-1275.
31. C. F. Perdomo, E.R. Figueroa, J. R. Paez, “BaTiO3 obtatined by coprecipitation method, Dyna-Colombia, 2009, 155, 75, 223-230.
32. A. Vos, J. Mullens, J. Yperman, D. Franco, L. G. Vanpoucke, “the preparation of PbTiO3 using the oxalate coprecipitation method, Eur. J. Solid State Inorg. Chem., 1993, 30, 10, 929-941.
33. A. V. Murugan, V. Samuel, S. C. Navale, V. Ravi, “Phase evolution of NiTiO3 prepared by coprecipitation method, Mater. Lett., 2006, 60, 15, 1791-1792.
34. C. B. Murray, D. J. Norris, M. G. Bawendi , Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites, J. Am. Chem. Soc., 1993, 115, 8706–8715.
35. W. W. Yu, X. Peng, Formation of High-Quality CdS and Other II-VI Semiconductor Nanocrystals in Noncoordinating Solvents: Tunable Reactivity of Monomers, Angew. Chem. Int. Ed., 2002, 41, 2368-2371.
36. M. Shim, P. Guyot-Sionnest, Organic-Capped ZnO Nanocrystals: Synthesis and n-Type Character, J. Am. Chem. Soc., 2001, 123, 11651-11654.
37. W. W. Yu, Y. A. Wang, X. Peng, Formation and Stability of Size-, Shape-, and Structure-Controlled CdTe Nanocrystals: Ligand Effects on Monomers and Nanocrystals, Chem. Mater., 2003, 15, 4300-4308.
38. P. Jongnam, J. Jin, K. G. Soon, J. Youngjin, H. Taeghwan, Synthesis of Monodisperse Spherical Nanocrystals, Angew. Chem. Int. Ed., 2007, 46, 4630-4660.
39. B. Li, Y. Xie, J. Huang, Y. Qian, “Synthesis by a solvothermal route and characterization of CuInSe2 nanowhiskers and nanoparticles, Adv. Mater., 1999, 11, 1456-1459.
40. Y. Jiang, Y. Wu, X. Mo, W. Yu, Y. Xie, Y. Qian, “Elemental Solvothermal Reaction To Produce Ternary Semiconductor CuInE2 (E = S, Se) Nanorods, Inorg. Chem., 2000, 39, 2964-2965.
41. Y.-G. Chun, K.-H. Kim, K.-H. Yoon, “Synthesis of CuInGaSe2 nanoparticles by solvothermal route, Thin Solid Films, 2005, 480-481, 46-49.
42. K.-H. Kim, Y.-G. Chun, B.-O. Paek, K.-H. Yoon, “Synthesis and Characterization of Cux(In,Ga)ySez Nanoparticles by Colloidal Route, Mater. Res. Soc. Symp. Proc., 2005, 836, 1-6.
43.K.-H. Kim, Y.-G. Chun, K.-H. Yoon, “Synthesis of CuInGaSe2 Nanoparticles by Low Temperature Colloidal Route, Journal of Mechanical Science and Technology , 2005, 19, 2085-2090.
44. S.-H Choi, E.-G. Kim, T. Hyeon, “One-Pot Synthesis of Copper?Indium Sulfide Nanocrystal Heterostructures with Acorn, Bottle, and Larva Shapes, J. Am. Chem. Soc., 2006, 128, 2520-2521.
45. J. Tang, S. Hinds, S. O. Kelley, E. H. Sargent, “Synthesis of Colloidal CuGaSe2, CuInSe2, and Cu(InGa)Se2 Nanoparticles, Chem. Mater., 2008, 20. 6906-6910.
46. C. Bernhard, E. Reinsch and K. Hisemann, “The Influence of Suspension Properties on Ultra-fine Grinding in Stirred Ball Mills, Powder Technology, 1999, 105, 357-361.
47.賴耿陽,“工業分散技術,復漢出版社,1994年。
48. J. C. Su, S.Y. Liang, W. L. Liu, T. C. Jan., “Ceramic Micro/Nanoparticle Size Evolution in Wet Grinding in Stirred Ball Mill, Journal of Manufacturing Science and Engineering, 2004, 126, 779-786.
49. M. Gao, E. Forssberg, “Prediction of Product Size Distributions for a Stirred Ball Mill, Journal of Powder Technology, 1995, 84, 101-106.
50. T. H. Hou, C. H. Su, W. L. Liu , “Setting the Optimal Parameters for a Nano-particle Milling Process, Proceedings of the 14th Industrial Engineering Research Conference(IERC), 2005, 1-6.
51. T. H. Hou, C. H. Su, W. L. Liu, “Parameters Optimization of a Nano-Particle Wet Milling Process Using the Taguchi Method, Response Surface Method and Genetic Algorithm, Journal of Powder Technology, 2007, 173, 153-162.
52. 姜俊賢、陳長成、李正治、卓漢明、李振發,精密量具及機件檢驗,文京圖書,1993年,pp.563-576。
53. 劉旺林,CIGS薄膜太陽能光電能材料奈米化及非真空式製程之研究,彰化師範大學電機工程學系博士論文,2008年。
54. H. Zhang, J. F. Banfield, “New kinetic model for the nanocrystalline anatase-to-rutile transformation revealing rate depending on number of particles, American Mineralogist, 1999, 84, 528-535.