跳到主要內容

臺灣博碩士論文加值系統

(44.211.31.134) 您好!臺灣時間:2024/07/22 18:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊秉霖
研究生(外文):Ping-LinYang
論文名稱:WWMII模式中不同碎波消散項對週期之影響
論文名稱(外文):On the Estimation of Wave Period in WWM II Model Using Different Dissipation Breaking Wave Terms
指導教授:許泰文許泰文引用關係
指導教授(外文):Tai-Wen Hsu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:水利及海洋工程學系碩博士班
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:67
中文關鍵詞:消散項風浪模式波浪週期
外文關鍵詞:dissipation termWind Wave modelwave period
相關次數:
  • 被引用被引用:3
  • 點閱點閱:164
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
波?模式在推算波?特性時,對於波高的模擬能有較好的結果,但對於波?週期之推算仍有改進的空間。本文以WWM II為例,使用不同的碎波消散項來探討模擬結果,本文碎波消散項採用Komen等人(1984)、Alves and Banner (2003)及Babanin and Young (2005) 之理論,進一步進行有限風域及波譜測試,來了解三種不同碎波消散項。並且在實例計算的部分使用台灣地區颱風案例及波羅的海的實例進行模擬,探討波浪週期的推算。
本文利用台灣環島海域四個驗證點及波羅的海來驗證三種不同碎波消散項對波浪週期的推算結果,由結果發現Babanin and Young (2005) 之理論明顯在西南部海域得到較準確的週期模擬結果,但在東部採用Komen等人(1984)之碎波消散項模擬週期結果較佳。

The wave simulation from wind wave model is more precise in wave height, but is normally underestimated in the prediction wave period. In this thesis, we use different dissipation breaking wave terms in WWM II to test the perform. Many dissipation function such as Komen et al. (1984); Alves and Banner (2003), and Babanin and Young (2005)’s dissipation terms were implemented in the wind wave model WWM II. Four Taiwan’s typhoon events and wind shear stress in Baltic sea were used to perform the numerical simulation and examie the impact to the forecast model results of the wave period.
The result of wave period show that good agreement with measurements in west and south coast using Babanin and Young (2005) dissipation breaking wave terms are found. Some discrepancy is found regarding the landing of typhoon in the east coast of Taiwan.

中文摘要 I
ABSTRACT II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 IX
符號說明 X
第一章 緒論 1
1-1 研究動機與目的 1
1-2 研究方法 1
1-3 前人研究 2
1-4 本文組織 4
第二章 理論背景 5
2-1 理論架構 5
2-2 波浪作用?平衡方程式之源函數 6
2-3 碎波消散項 6
第三章 風浪模式中加入啟動門檻值型態之消散項 9
3-1 啟動門檻值型態之消散項 9
3-2 a 和 b 試驗常數之測試 12
3-3 有限風域之測試 18
3-4 Lake George之模式波譜測試 21
第四章 實例應用 25
4-1 模式輸入條件 25
4-1-1 風場處理 25
4-1-2 格網設定 26
4-2 實例計算 31
4-3 驗證參數 47
第五章 結論與建議 60
5-1 結論 60
5-2 建議 61
參考文獻 62
1.Alves, G.M.J.H., Banner, M.L., ‘Impact of a saturation-dependent dissipation source function on operational hindcasts of wind-waves in the Australian region’., Atmosph. and Ocean system., Vol.8 No4. pp. 239-267 (2003).
2.Alves, G.M.J.H., Banner, M.L., ‘Performance of a saturation-based dissipation source term for wind wave spectral modelling’., J. Phys. Oceanogr., Vol.33, 1274-1298 (2003).
3.Ardhuin, F., F. Collard, B. Chapron, P. Queffeulou, J.-F. Filipot, and M. Hamon: Spectral wave dissipation based on observations: a global validation. Proceedings of Chinese-German Joint Symposium on Hydraulics and Ocean Engineering, Darmstadt, Germany (2008).
4.Babanin, A.V., and Y.P. Soloviev: Parameterization of width of directional energy distributions of wind-generated waves at limited fetches. Izvestiya, Atmospheric and Oceanic Physics, 23, 645-651 (1987).
5.Babanin, A.V. and Y.P. Soloviev: Variability of directional spectra of windgenerated waves, studied by means of wave staff arrays. Marine & Freshwater Res., 49, 89-101 (1998a).
6.Babanin, A.V., I.R. Young, and M.L. Banner: Breaking probabilities for dominant surface waves on water of finite constant depth. J. Geophys. Res., C106, 11659-11676 (2001).
7.Babanin, A.V., and I.R. Young: Two-phase behaviour of the spectral dissipation of wind waves. Proc. Ocean Waves Measurement and Analysis, Fifth Intern. Symposium WAVES2005, 3-7 July, 2005, Madrid, Spain, Eds. B. Edge and J.C. Santas, paper no.51, 11p (2005).
8.Babanin, A.V., I.R. Young, R. Manasseh and E. Schultz: Spectral dissipation term for wave forecast models, experimental study. Proc. 10th Int. Workshop on Wave Hindcasting and Forecasting and Coastal Hazards, Oahu, Hawaii, November, 11-16, 2007, Sponsors: U.S. Army Engineer Research and Development Center’s Coastal and Hydraulics Laboratory, Environment Canada, WMO/IOC Joint Technical Commission for Oceanography and Marine Meteorology (JCOMM), 19p (2007a).
9.Babanin, A.V., K.N. Tsagareli, I.R. Young, and D. Walker: Implementation of new experimental input/dissipation terms for modeling spectral evolution of wind waves. Proc. 10th Int. Workshop on Wave Hindcasting and Forecasting and Coastal Hazards, Oahu, Hawaii, November, 11-16, 2007, Sponsors: U.S. Army Engineer Research and Development Center’s Coastal and Hydraulics Laboratory, Environment Canada, WMO/IOC Joint Technical Commission for Oceanography and Marine Meteorology (JCOMM), 12p (2007b).
10.Babanin, A.V.: Breaking of ocean surface waves, Acta Physica Slovaca, 59(4), 305-535 (2009).
11.Banner, M. L., Babanin, A. V., and Young, I. R., ‘Breaking probability for dominant waves on the sea surface’., J. Phys. Oceanogr., Vol.30, 3145–3160 (2000).
12.Banner, M. L., Gemmrich, J. R., and Farmer, D. M., ‘Mutiscale measurements of ocean wave breaking probability’., J. Phys. Oceanogr., Vol.32, 3264–3275 (2002).
13.Battjes, J. A. and J. P. F. M. Janssen, “Energy Loss and Set-up due to Breaking of Random Waves, Proceedings of 16th International Conference on Coastal Engineering, ASCE, pp. 569-587 (1978).
14.Battjes, J. A. and M. J. F. Stive, “Calibration and Verification of a Dissipation model for random breaking waves, Journal of Geophysical Research, Vol. 90, No. C5, pp. 9159-9167 (1985).
15.Bretherton, F.P. and C.J.R. Garrett, “Wave Trains in Inhomogeneous Moving Media, Proc. Roy. Soc. London, Vol. A302, pp. 529-554 (1968).
16.Booij, N., Ris, R. C., and Holthuijsen, L. H., “A third-generation Wave Model for coastal Regions, Part I: Model Description and Validation, JGR-Oceans 98JC02622, Vol. 104, No. C4, pp.7649 (1999a).
17.Booij, N., Ris R. C., and Holthuijsen L. H., “A third-generation Wave Model for coastal Regions 2: Verification, JGR-Oceans, Vol. 104, No. C4, pp.7667-7682 (1999b).
18.Bouws, E. and G.J. Komen, “On the Balance between Growth and Dissipation in an Extreme, Depth-limited Wind-sea in the Southern North Sea, Journal of Physical Oceanography, Vol. 13, pp. 1653-1658 (1983).
19.Bretherton, F. P. and Garrett C. J. R., “Wave trains in inhomogeneous moving media, Proceedings of Royal Society, Series A, Vol. 302, pp. 529-554 (1969).
20.Bretschneider, C.L., “The Generation and Decay of Wind Waves in Deep Water, Transaction American Geophysical Union, 33, No. 3, pp. 202-237 (1952).
21.Collins, J.I., “Predictions of Shallow-water spectra, Journal of Geophysical Research, Vol. 77, pp. 2693-2707 (1972).
22.Dally, W.R., R.G. Dean and R.A. Dalrymple, “Wave Height Variation Across Beaches of Arbitrary Profile, Journal of Geophysical Research, Vol. 90 (C6), pp. 11917-11927 (1985).
23.Donelan, M.A.: A nonlinear dissipation function due to wave breaking. ECMWF Workshop on Ocean Wave Forecasting, 2-4 July, 2001, Series ECMWF Proc., 87-94 (2001).
24.Hasselmann, K., “On the Spectral Dissipation of Ocean Waves due to Whitecapping, Bound.-layer Meteor., Vol. 6, No. 1-2, pp. 107-127 (1974).
25.Holthuisen, L., Ris, R., Booij, N., and Cecchi. E., ‘Swell and whitecapping a numerical experiment’., ASCE, Waves 2001, Vol. 1, 346-354 (2001).
26.Horikawa, K. and Kuo C. T., “A study of wave transformation inside surf zone, Proceedings of 10th International Conference on Coastal Engineering, Tokyo, ASCE, pp. 405-418 (1966).
27.Hsu, T. W., Ou, S. H., and Liau, J. M., “Hindcasting nearshore wind waves using a FEM code for SWAN, Coastal Engineering, Vol. 52, pp. 177-195 (2005).
28.Janssen, P.A.E.M., ‘On the effect of gustiness on wave growth’., KNMI, Afdeling Oceanografisch Onderzoek memo, 00-86-18. De Bilt, 17p (1986).
29.Young, I.R. and L.A. Verhagen: The growth of fetch limited waves in water of finite depth. Part I: Total energy and peak frequency, Coastal Engineering, 29, 47-78 (1996a).
30.Young, I.R. and L.A. Verhagen: The growth of fetch limited waves in water of finite depth. Part II: Spectral Evolution, Coastal Engineering, 29, 79-99 (1996b).
31.Young, I.R. and L.A. Verhagen: The growth of fetch limited waves in water of finite depth. Part III: DIrectional spectra, Coastal Engineering, 29, 101-121 (1996c).
32.Janssen, ‘Wave induced stress and the drag of air flow over sea waves’., J. Phys Oceanogr., Vol.19, 745-754 (1989).
33.Jonsson, I. G., “Wave Boundary Layers and Friction Factors, Proceedings of 10th International Conference on Coastal Engineering, ASCE, pp. 127-148 (1966).
34.Jonsson, I. G. and N. A. Carlsen, “Experimental and Theoretical Investigations in an Oscillatory Turbulent Boundary Layer, Journal of Hydraulic Research, Vol. 14, pp. 45-60 (1976).
35.Jonsson, I. G., “A New Approach to Rough Turbulent Boundary Layers, Ocean Engineering, Vol. 7, pp. 109-152 (1980).
36.Komen, G. J., S. Hasselmann, and K. Hasselmann, “On the Existence of a Fully Developed Wind-sea Spectrum, Journal of Physical Oceanography, Vol. 14, pp. 1271-1285 (1984).
37.Komen, G. J., L. Cavaleri, M. Donelan, K. Hasselmann, S. Hasselmann and P. A. E. M. Janssen, Dynamics and Modeling of Ocean Waves, Cambridge University Press, 532 p. (1994).
38.Lin, L. H., Lin, R. Q., ’Wave breaking function’ (2004).
39.Madsen, O. S., Y.-K. Poon and H. C. Graber, “Spectral Wave Attenuation by Bottom Friction Theory, Proceedings of 21th International Conference on Coastal Engineering, ASCE, pp. 492-504 (1988).
40.Makin, V. K., Kudryavtsev, V. N., ‘Coupled sea surfaceatmosphere model 1. Wind over waves coupling’., J. Geophys. Res. Vol.104, 7613-7623 (1999).
41.Makin, V. K., Stam, M., ‘New drag formulation in NEDWAM’., KNMI, Technical Report, TR-250. De Bilt, 16p (2003).
42.Manasseh, R., A.V. Babanin, C. Forbes, K. Rickards, I. Bobevski, and A. Ooi : Passive acoustic determination of wave-breaking events and their severity across the spectrum. J. Atmos. Oceanic Tech., 23, 599–618 (2006).
43.Miles, J.W., “On the Generation of Surface Waves by Shear Flows, Journal of Fluid Mechanics, Vol. 3, pp. 185-204 (1957).
44.Miles, J.W. “On the Generation of Surface Waves by Shear Flows, Part 2, Journal of Fluid Mechanics, Vol. 6, pp. 568-582 (1959).
45.Miles, J.W., “On the Generation of Surface Waves by Turbulent Shear Flow, Journal of Fluid Mechanics, Vol. 7, pp. 469-478 (1960).
46.Phillips, O.M.: On the response of short ocean wave components at a fixed number to ocean current variations. J. Phys. Oceanogr., 14, 1425-1433 (1984).
47.Phillips, O.M., “Spectral and Statistical Properties of the Equilibrium Range in Wind-generated Gravity Waves, Journal of Fluid Mechanics, Vol. 156, pp. 505-531 (1985).
48.Roland, A., Mewis, P., Zanke, U.C.E., ‘Comparison of different source term formulations in spectral wave models’., 2nd Joint Sino-German Conference on Coastal and Ocean Engineering (Nanjing 2004; PR China) (2004).
49.Roland, A., Development of the WWM II -Spectral Wave Modeling on Unstructured Meshes, PhD Thesis, Institute for Hydraulic and Water Resources Engineering. University of Technology Darmstadt (2009).
50.Sverdrup, H.U. and W.H. Munk, “Wind, Sea and Swell, Theory of Relation for Forecasting, US Navy Hydrographic Office, Pub. 601, pp. 44 (1947).
51.Tolman, H. L., User manual and system documentation of WAVEWATCH-III version 1.15, NOAA / NWS / NCEP / OMB Technical Note 151, pp. 97 (1997).
52.Tolman and Chalikov, D., ‘Source terms in a third-generation wind wave model’., J. Phys. Oceanogr., Vol.26, 2497–2518 (1996).
53.Tolman, H. L., User manual and system documentation of WAVEWATCH-III version 1.18. NOAA / NWS / NCEP / OMB Technical Note 166 , pp. 110 (1999).
54.Tsagareli, K.N.: Numerical investigation of wind input and spectral dissipation in evolution of wind waves. PhD Thesis, University of Adelaide, Australia, 217p (2008).
55.WAMDI Group, “The WAM model-A Third Generation Ocean Wave Prediction Model, Journal of Physical Oceanography, Vol. 18, pp. 1775-1810 (1988).
56.Wilson, B.W., “Graphical Approach to The Forecasting of Waves in Moving Fetches, US Army Corps of Engineers, Beach Erosion Board Tech. Memo., 73. pp. 1-31 (1955).
57.Willebrand, J., “Energy Transport in a Nonlinear and Inhomogeneous Random Gravity Wave Field, Journal of Fluid Mechanics, Vol. 70, pp. 113-126 (1975).
58.Wu, J., “Wind-stress Coefficients over Sea Surface from Breeze to Hurricane, Journal of Geophysical Research, Vol. 87, No. C12, pp. 9704-9706 (1982).
59.許泰文,「近岸水動力學」,科技圖書,第129頁-第130頁 (2003)。
60.方介群,「應用SWAN 風浪模式推算台灣附近海域之颱風波浪」,國立成功大學水利及海洋工程研究所碩士論文(2000)。
61.廖建明,「近岸風浪推算之研究」,國立成功大學水利及海洋工程研究所博士論文(2001)。
62.李怡婷,「風浪模式計算最佳化之研究」,國立成功大學水利及海洋工程研究所碩士論文(2005)。
63.鄭皓元,「SWAN 波?模式推算週期之探討」,國立成功大學水利及海洋工程研究所碩士論文(2005)。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top