( 您好!臺灣時間:2024/07/16 17:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


論文名稱(外文):Numerical simulation of solitary wave over the porous thin barriers
指導教授(外文):Shih-Chun Hsiao
外文關鍵詞:solitary wavelarge eddy simulation
  • 被引用被引用:1
  • 點閱點閱:286
  • 評分評分:
  • 下載下載:29
  • 收藏至我的研究室書目清單書目收藏:0
海嘯會對沿海國家造成長期的社會經濟等各方面的影響,2004 年南亞
嘯波之波前(wave front),利用TRUCHAS 數值模式,模擬孤立波通過透水
Tsunami will cause long-term socio-economic impact to the coastal countries. After the 2004 Indian Ocean tsunami, many coastal states invested lots of resources to improve their coast protection, reduce the damage from tsunami. Permeable structures are low cost and very effective in reducing the
transmitted energy of waves, and less harmful to the environment. In present study, the wave front of tsunami is viewed as the solitary wave that shall be used to investigate the interaction between the solitary wave and permeable structures by using TRUCHAS numerical model. Two main parameters in this study are discussed:one is wave nonlinearity defined as the ratio of the wave
height and water depth, the other is the porosity of the permeable structures. Our numerical results show that these two parameters have significant effects
on the evolution. Particularly, the free surface will produce a backward breaking for the case of zero porosity, while such a phenomenon is not seen for porosity being equal to 40 %. Furthermore, the size of the vortex is also
affected by the porosity of thin barrier. It is also found that more violent interaction between the solitary wave and the structure is seen as wave nonlinearity becomes larger.
摘要 I
Abstract II
致謝 III
目錄 IV
表目錄 VII
圖目錄 VIII
符號說明 X
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 2
1-3 文獻回顧 3
1-3.1孤立波理論回顧 3
1-3.2 規則波通過分隔薄板之實驗與理論回顧 4
1-3.3 孤立波通過直立分隔薄板之實驗與理論回顧 7
1-4 本文架構 9
第二章 數值方法 11
2-1 模式簡介 11
2-2 控制方程式 11
2-3 大渦模擬 12
2-4 有限體積法 16
2-5 流體體積法 19
2-6 自由液面之建立 21
2-7 投影法 22
2-8 邊界條件 23
2-8.1 不可滑動邊界 23
2-8.2 自由滑動邊界條件 24
2-8.3 壓力Dirichlet邊界條件 25
2-8.4 波浪入射邊界條件 25
2-8.5 輻射邊界條件 25
2-9 數值海綿層設置 26
2-10 程式計算流程 27
2-11 數值穩定度 28
第三章 數值模式之驗證 29
3-1 孤立波於半無限長潛堤上之數值模擬 29
3-2 孤立波通過潛沒式直立薄板之數值模擬 33
第四章 結果與討論 38
4-1 數值模擬設定 38
4-1.1 數值水槽 38
4-1.2 網格建構 39
4-1.3 邊界條件 39
4-1.4 初始條件 40
4-1.5 影響流場之因子 41
4-2 結果與討論 42
4-2.1 波高水深比H/h=0.5 42
4-2.2 波高水深比 H/h = 0.25 58
4-2.3 波高水深比 H/h = 0.1 66
4-2.4 不同波高之孤立波通過結構物的比較 67
4-3 三維數值模擬 76
4-3.1 三維數值水槽設置與初始條件 76
4-3.2 網格建構 77
4-3.3 邊界條件 77
4-3.3 結果與討論 78
第五章 結論與建議 89
5-1結論 89
5-1.1 透水與否對孤立波通過結構物的影響 89
5-1.2 孔隙率大小對孤立波通過結構物的影響 89
5-1.3 波高大小對孤立波通過結構物的影響 90
5-1.4 孤立波通過三維結構物的運動變化 90
5-2未來發展與建議 91
參考文獻 92

1.Boussinesq, J. , Theorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond, Journal de Mathematique Pures et Appliquees, Deuxieme Serie 17 ,pp. 55-108, 1872.

2.Cabot, W. and Moin, P., Approximate wall boundary conditions in the large-eddy simulation of high Reynolds number flow, Flow, Turbulence and Combustion, pp. 269-291, 2000.

3.Chorin, A. J., Numerical solution of the Navier-Stokes equations, Mathematics of Computation, Vol. 22, pp. 745-762, 1968.

4.Chorin, A. J., On the convergence of discrete approximations of the Navier-Stokes equations, Mathematics of Computation, Vol. 23, pp. 341-353, 1969.

5.Dean, R. G. and Dalrymple, R. A., Water wave mechanics for engineers and scientists, Advanced Series on Ocean Engineering, Vol. 2.

6.Fernando, H. J. S., S. P. Samarawickrama, S. Balasubramanian, S. S. L. Hettiarachchi and S. Voropayev, Effects of porous barriers such as coral reefs on coastal wave propagation, Journal of Hydro-environment Research, Vol. 1, No. 3-4, pp. 187-194, 2008.
7.Grimshaw, R., The solitary wave in water of variable depth, Journal of Fluid Mechanics, Vol. 42, pp. 639-656, 1970.

8.Hirt, C. W., and Nichols, B. D., Volume of fluid (VOF) method for the dynamics of free boundaries, Journal of Computational Physics, Vol. 39, pp. 201-225, 1981.

9.Huang, Z. H., and Z. Yuan, Transmission of solitary waves through slotted barriers: A laboratory study with analysis by a long wave approximation, Journal of Hydro-environment Research, Vol. 3, No. 4, pp. 179-185, 2010.

10.Huang, Z. H., An experimental study of wave scattering by a vertical slotted barrier in the presence of a current, Ocean Engineering, Vol. 34, No. 5-6, pp. 717-723, 2007.

11.Huang, Z. H. and M. S. Ghidaoui, A model for the scattering of long waves by slotted breakwaters in the presence of currents, Acta Mechanica Sinica, Vol. 23, No. 1, pp. 1-9, 2007.

12.Isaacson, M., J. Baldwin, S. Premasiri and G. Yang, Wave interactions with double slotted barriers, Applied Ocean Research, Vol. 21, No. 2, pp. 81-91, 1999.

13.Jaluria, Y. and Torrance, K. E., Computational Heat Transfer, Washington, D. C., Hemisphere., 1986.

14.Korteweg, D. J. and deVries,G., On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary wave, London, Edinburgh, and Dublin Philosophicstl Magazine, Series 5, Vol. 39, pp. 422-443, 1895.

15.Larsen, J. and Dancy, H., Open boundaries in short wave simulations - A new approach, Coastal Engineering Vol. 7, pp. 285-297, 1983.

16.Lin, P., Numerical modeling of breaking waves, Ph.D dissertation, Cornell University, Ithaca, USA, 1998.

17.Lin, C. Y. and Huang, C. J. , Numerical simulation of wave breakings using particle level set method Journal of Coastal and Ocean Engineering, Vol. 7, No. 1, pp. 1-19, 2007

18.Liu, P.L.-F. and Abbaspour, M., Wave scattering by a rigid thin barrier, Journal Waterway, Port, Coastal, Ocean Engineering Division., ASCE Vol. 108, pp. 479-491, 1982.

19.Liu, P. L. F. and K. Al-Banaa, Solitary wave runup and force on a vertical barrier, Journal of Fluid Mechanics, Vol. 505, pp. 225-233, 2004.

20.Losada, I. J., M. A. Losada and A. J. Roldan, Propagation of oblique incident waves past rigid vertical thin barriers, Applied Ocean Research, Vol. 14, No. 3, pp. 191-199, 1992.

21.Losada, M. A., I. J. Losada and A. J. Roldan, Propagation of oblique incident modulated waves past rigid, vertical thin barriers, Applied Ocean Research, Vol. 15, No. 5, pp. 305-310, 1993.

22.Manam, S. R. and T. Sahoo, Waves past porous structures in a two-layer fluid, Journal of Engineering Mathematics, Vol. 52, No. 4, pp. 355-377, 2005.

23.Mani,J.S. and Jayakumar, S., Wave transmission by suspended pipe breakwater, Journal of Waterway, Harbor, Coastal and Ocean Engineering, Vol. 121, No. 6, pp.335-338, 1995.

24.McCowan, J., On the solitary waves, Philosophical Magazine, Vol. 32, pp. 45-58, 1891.

25.Mei,C.C., Liu, P.L.-F., Ippen, A.T., Quadratic head loss and scattering of long waves, Journal of Waterway, Harbor and Coastal Engineering Division 99, pp.209-229,1974.
26.Miles, J. W., Solitary waves, Annual Review of Fluid Mechanics, Vol. 12, pp. 11-43, 1980.

27.Rageh, O. S. and A. S. Koraim, Hydraulic performance of vertical walls with horizontal slots used as breakwater, Coastal Engineering, Vol. 57, No. 8, pp. 745-756, 2010.

28.Rayleigh, Lord., On waves, Acta Mechanica Sinica, ser. 5, Vol. 1, No. 4, pp. 257-279, 1876.

29.Rider, W. J. and Kothe, D. B., Reconstructing volume tracking, Journal of Computational Physics, Vol.141, pp.112-152, 1998.

30.Smagorinsky, J., General circulation experiments with the primitive equations: I. The basic equations., Monthly Weather Review, Vol. 91, pp. 99-164, 1963.

31.Synolakis,C.E. and E.N.Bernard, Tsunami science before and beyond boxing day 2004, Philosophical Transactions of the royal society A, Vol. 364, , pp. 2231-2265, 2006.

32.The TELLURIDE Team, Truchas physics and algorithms, , 2004.

33.Titov, V., A. B. Rabinovich, H. O. Mofjeld, R. E. Thomson and F. I. Gonzalez, The global reach of the 26 December 2004 Sumatra tsunami, Science, Vol. 309, No. 5743, pp. 2045-2048, 2005.

34.Ursell,F. and W.R.Dean, The effect of a fixed vertical barrier on surface waves in deep water, Proceedings of the Cambridge Philosophical Society, Vol. 43, issue 03, pp. 374,1947

35.Wiegel, R. L., Transmission of waves past a rigid vertical thin barrier, Journal of the Waterways and Harbors Division ASCE, Vol. 86, pp. 1-12, 1960.

36.Wu,T.R., A numerical study of three-dimensional breaking waves and turbulence effects, Ph.D dissertation, Cornell University, 2004.

37.Wu, Y. T., Hsiao, S. C., Numerical study of solitary wave propagating over a vertical thin barrier, Proceedings of the 20th International Offshore (Ocean) and Polar Engineering Conference, Beijing, ISOPE, pp. 1028-1035, 2010.

38.Wu, Y. T., Numerical Investigation of solitary wave interaction with a submerged vertical thin barrier, Master thesis, National Cheng Kung University, Tainan, Taiwan (Manuscript), 2010.

39.Yasuda, T., H. Mutsuda and N. Mizutani, Kinematics of overturning solitary waves and their relations to breaker types, Coastal Engineering, Vol. 29, No. 3-4, pp. 317-346, 1997.

註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
第一頁 上一頁 下一頁 最後一頁 top