跳到主要內容

臺灣博碩士論文加值系統

(34.204.198.73) 您好!臺灣時間:2024/07/19 14:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:彭微之
研究生(外文):Wei-ChihPeng
論文名稱:基於GPS網格PPP技術對流層溼延遲量於強降雨期間的時頻分析
論文名稱(外文):Time Frequency Analysis of Tropospheric Wet Delay Series Monitored by GPS-PPP during Extreme Rainfall
指導教授:江凱偉江凱偉引用關係
指導教授(外文):Kai-Wei Chiang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:測量及空間資訊學系碩博士班
學門:工程學門
學類:測量工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:113
中文關鍵詞:精密單點定位濕延遲量時頻分析
外文關鍵詞:Precise Point PositioningWet delayTime Frequency Analysis
相關次數:
  • 被引用被引用:6
  • 點閱點閱:334
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
颱風是每年影響台灣最嚴重的氣象事件,每年約有20個颱風會在台灣外海的太平洋形成,而會有4-5個颱風會直接襲擊台灣,颱風所帶來的影響不僅造成經濟上的嚴重損失,並帶來大量的雨水,進而造成人員的傷亡。梅雨是發生在每年約5-6月的西太平洋國家,如台灣、日本以及中國大陸,由於每年5、6月的東北季風與西南氣流會先在台灣形成鋒面,進而造成連續的降雨,亦時常造成農業上的虧損。
本研究利用全球定位系統網格結合精密單點定位來獲得強降雨期間的對流層溼延遲量,如颱風和梅雨季節,並利用小波轉換分析和互相關演算法探討台灣各地的溼延遲量與雨量資料的空間與時間的特徵;互相關演算法可以得到溼延遲量與雨量資料的時間延遲;小波轉換分析可以獲得下雨事件的頻率特徵,更可以得知事件發生的時間點。本研究結果顯示在颱風與梅雨期間,台灣各地的時間延遲約在2-7小時左右;降雨特徵可以透過小波轉換分析被萃取出來,亦可明確地得到降雨的時間點;而溼延遲量在每天都有固定的週期,亦可藉由小波轉換分析偵測出來。
有良好的e-GPS網搭配精密單點定位技術便可以輔助氣象儀器來監測氣象事件的特徵,若各服務組織亦可以提供更高精度的近即時星曆,便可以透過近即時PPP技術偵測氣象事件來獲取有用的資訊,並發佈警訊,這對未來防災應用上也許會是一個實用的工具。

Typhoons are the most serious weather system that strike Taiwan annually. There are about three or four typhoons that affect Taiwan every year and bring destructive winds and extreme rainfalls. They can seriously cause damages of agriculture, industry and human casualties. Historical records show that on the average, there are about 20 typhoons form in this area each year and among them three to four may invade Taiwan. Plum rains are the unique weather and climate phenomenon taking place annually only in eastern Asia including Taiwan region and coastal China because this region is located in one of distinct monsoon areas in the world. Plum rains season in Taiwan is from May to June every year.
This study propose the procedures facilitate GPS network PPP derived ZWD for investigating the characteristics of extreme rainfall triggered by typhoons and plum rains, the temporal and spatial relationships between GPS network PPP derived ZWD and rainfall is essential. The cross-correlation analysis is applied to GPS-PPP estimated ZWD series and accumulated precipitation series collected at four sites during typhoon cases and plum rains to obtain time delay. The Wavelet Transform spectrum analysis is applied to obtain specific frequency information to identify the ZWD and rainfall disturbance; moreover, it reveals exactly when certain events take place. The results illustrates that there is about 2-7 hours time delay in Taiwan in typhoon cases and plum rains. The characteristics of rainfall could be detected by using the Wavelet Transform analysis; it could clearly catch the time information from rainfall records. The daily cycle of variation of ZWD also could be caught by using Wavelet Transform analysis.
The well-distributed e-GPS network can be considered as supplemental meteorological sensors to monitor the characteristics of extreme rainfall triggered by weather events. With improved near real-time precise products provided by other institutions, a near real-time GPS network PPP based meteorological sensors can provide useful information for developing early warning system for climate events like typhoons, plum rains, and seasonal thunderstorm in the future.

目錄
第一章 緒論 ..1
1.1 前言 ..1
1.2 研究動機與目的 ..2
1.3 文獻回顧 ..3
1.4 論文架構. ..4
第二章 GPS衛星測量基礎理論與精密單點定位 .6
2.1 GPS基本觀測原理 ..6
2.2 GPS觀測方程式 ..7
2.2.1 電碼虛擬距離觀測量 ..7
2.2.2 載波相位觀測量 ..8
2.3 差分相對定位(Differential GPS) 10
2.3.1 地面一次差 10
2.3.2 空中一次差 11
2.3.3二次差 12
2.3.4三次差 13
2.4精密單點定位 14
2.4.1精密單點定位基本原理 14
2.4.2精密單點定位觀測方程式 17
2.4.3 精密單點定位誤差來源與改正方法 19
2.4.3.1 接收儀和測站相關之誤差 20
2.4.3.2 衛星相關之誤差 23
2.4.3.3 訊號傳遞相關誤差 24
2.4.4 精密單點定位演算法之架構 25
第三章 GPS氣象學 …28
3.1 GPS氣象原理介紹 28
3.2 對流層的結構 31
3.3 對流層延遲原理 34
3.4 模式化天頂方向對流層延遲量 37
3.5 映射函數 41
3.5.1 Hopfield Mapping Function 42
3.5.2 Black Mapping Function 43
3.5.3 Chao Mapping Function 43
3.5.4 Baby et al. Mapping Function 44
3.5.5 Herring Mapping Function 44
第四章 e-GPS參考站ZWD的驗證與實驗方法 .45
4.1 e-GPS站ZWD的驗證 45
4.2 傅立葉轉換和小波轉換頻率分析 51
4.2.1 傅立葉轉換 51
4.2.2 短時傅立葉轉換 52
4.2.3 小波轉換 54
4.2.3.1 連續小波轉換 56
4.2.3.2 多尺度分析(MRA) 58
4.3 相關函數 59
4.3.1 自相關 59
4.3.2 互相關 60
4.4 相關文獻探討 62

第五章 實驗結果與分析 .63
5.1 實驗資料與資料處理流程 63
5.2 互相關運算分析 66
5.2.1 實驗案例1: 辛樂克颱風 66
5.2.2 實驗案例2: 莫拉克颱風 71
5.2.3 實驗案例3: 2008年梅雨季 75
5.2.4 實驗案例4: 2009年梅雨季 80
5.3 雨量時頻分析 85
5.3.1 實驗案例1: 辛樂克颱風 85
5.3.2 實驗案例2: 莫拉克颱風 88
5.3.3 實驗案例3&4 : 2008年梅雨期間和2009年梅雨期間 90
5.4 溼延遲量時頻分析 95
5.4.1 實驗案例1:辛樂克颱風 95
5.4.2 實驗案例2:莫拉克颱風 98
5.4.3 實驗案例4: 2008年梅雨期間 100
5.4.4 實驗案例4: 2009年梅雨期間 103
5.5 小結 105
第六章 結論與建議 .106
6.1 結論 106
6.2 建議 107
參考文獻 .108
1.鄧忠民 (1998)。利用全球定位系統估算大氣溼遲延量。碩士論文,國立中央大學,中壢。
2.劉基余、李征航、王躍虎、桑吉章(1993)。全球定位系統原理與其應用。測繪出版社,北京。
3.曾清涼、儲慶美 (1999)。GPS衛星測量原理與應用。第二版,國立成功大學衛星資訊中心,台南。
4.曾清涼、余致義、何慶雄、劉啟清、楊名(1997)。各類儀器之操作說明。GPS衛星定位測量實務(曾清涼、余致義、何慶雄、劉啟清、楊名編著)。成功大學衛星資訊研究中心,台南。
5.儲慶美 (1995)。全球定位系統之原理與應用。第23屆國軍軍事著作金像獎作,11月。
6.邱冠維 (2009)。利用精密單點定位進行GPS浮標近即時精密定位。碩士論文,國立成功大學,台南。
7.謝吉修 (2003)。GPS即時動態定位最佳化演算法比較研究。碩士論文,國立中央大學,中壢。
8.汪俊寰、史天元 (2000),以全球定位系統估算大氣溼延遲量,測量工程,第四十二卷,第三期, 3-16頁。
9.王傳盛 (2009)。對流層延遲效應與全球定位系統高成定位之研究。博士論文,國立中央大學,中壢。
10.王意如 (2006)。小波轉換應用於光纖感測之研究。碩士論文,國立中山大學,西子灣。
11.葉大綱 (2008)。全球定位科學應用研究中心計畫-以WVR驗證GPS測定之大氣含水量,財團法人國家實驗研究院國家太空中心補助專題研究計劃期末報告。
12.楊名、江凱偉 (2008)。97年度全球導航衛星系統(GNSS)資料聯合處理技術報告,內政部國土測繪中心。
13.楊名、江凱偉 (2009)。發展臺灣區域性對流層延遲估算模式先期研究作業,內政部國土測繪中心。
14.單維章,(1998)。凌波初步。全華科技圖書股份有限公司,台北。
15.胡昌華、張軍波、夏軍、張偉,基於MATLAB的系統分析與設計-小波轉換,西安電子科技大學出版社,西安。
16.江支弘,(2003)。運用小波轉換改善超音波法檢測混凝土訊號判讀。碩士論文,朝陽科技大學,台中。
17.?卷佳壽美,(1998)。看圖瞭解數位訊號處理。建興文化事業有限公司。
18.匡正、季仲貞、林一驊,(2000)。華北降水時間序列資料的小波分析。氣候與環境研究,第5卷,第3期,312-317頁。
19.朱錦弘、王紹武、慕巧珍,(2003)。華北夏季降水80年震盪及其與東亞夏季風的關係。自然科學進展,第13卷,第11期,1205-1209頁。
20.Abidin H.Z. (1992). Some aspects of on-the-fly ambiguity resolution. Proceedings of the Sixth International Geodetic Symposium on Satellite Positioning, 660-669.
21.Abdel-Salam M., Gao Y. and Shen X. (2002). Analyzing the Performance Characteristics of a Precise Point Positioning System. Proceedings of the ION GPS-2002, Portland, Oregon, USA.
22.Baby H.B., Gol? P. and Lavergnat J. (1988). A model for the tropospheric excess path length of radio waves from surface meteorological measurements. Radio Science, Vol. 23, No. 6, pp. 1023-1038.
23.Bai Z. and Feng Y. (2003). GPS water vapor estimation using interpolated surface meteorological data from Australian automatic weather stations, Journal of Global Positioning System, Vol. 2, no. 2, pp. 83-89.
24.Bevis M., Businger S., Herring T., Rocken C., Anthes R. and Ware R.H. (1992). GPS Meteorology: Remote sensing of atomospheric water vapor using the global positioning system, Journal of Geophysical Research, Vol. 97, no. D14, pp. 15787-15801.
25.Bevis M., Businger S., Chiswell S., Herring T., Anthes R., Rocken C. and Ware R. (1994). GPS Meteorology: Mapping zenith wet delays onto precipitable water. Journal of Applied Meteorology, Vol. 33, pp.379-386.
26.Black H. and Eisner A. (1984). Correcting satellite doppler data for tropospheric effects, Journal of Geophysical Research, Vol. 89, no. D2, pp. 2616-2626.
27.Brocard E., John V., Buehler S., Von Engeln A., Eriksson P., Kuhn T. and Koenig-Langlo G.. (2006). Understanding the variability of clear-sky outgoing long-wave radiation based on ship-based temperature and water vapour measurements, Quarterly Journal of the Royal Meteorological Society, Vol. 132, no. 621B, pp. 2675-2691.
28.Brunner F.K. and Welsch W.M. (1993). Effect of the troposphere on GPS measurements, GPS World, Vol. 4, no. 1, pp. 42-51.
29.Businger S., Chiswell S.R., Ulmer W.C. and Johnson R. (1996). Balloons as a lagrangian measurement platform for atmospheric research, Journal of Geophysical Research, Vol. 101, no. D2, pp. 4363-4376.
30.Cai C. and Gao Y. (2007). Performance analysis of precise point positioning based on combined GPS and GLONASS, ION GNSS 20th ITM, pp.858-865.
31.Chu C.M. (1993). Efficient and effective handling of cycle slips in global positioning system data. PhD thesis, School of Surveying, the University of New South Wales, Sydney, Australia. December.
32.Coster A. J., Niell A.E., Solheim F.S., Mendes V.B., Toor P.C., Buchmann K.P. and Upham C.A. (1996). Measurements of precipitable water vapor by GPS, radiosondes, and a microwave aater vapor dadiometer, Proceedings ION GPS-96, pp. 625-634.
33.Dodson A.H., Shardlow P.J., Hubbard L.C.M., Elegered G. and Jarlemark P.O.J. (1996). Wet tropospheric effects on precise relative GPS height determination, Journal of Geodesy, Vol. 70, no. 4, pp.188–202.
34.Duan J., Bevis M., Fang P., Bock Y., Chiswell S., Businger S., Rocken C., Solheim F., van Hove T., Ware R., McClusky S., Herring T. and King R. (1995). GPS Meteorology: Direct estimation of the absolute value of precipitable water. Journal of Applied Meteorology, Vol. 35, pp. 830-838.
35.Gao Y. and Shen X. (2001). Improving ambiguity convergence in carrier phase-based precise point positioning. Proceedings of ION GPS-2001, Salt Lake City.
36.Haar A. (1910). Theorie der orthogonalen funktionen-systeme. Mathematische Annalen, Vol. 69, pp. 331-371.
37.Herring T.A. (1992). Modeling atmospheric delays in the analysis of space geodetic data, Proceedings of the Symposium on Refraction of Transatmospheric Signals in Geodesy, Netherlands, no. 36, pp. 157-164.
38.H?roux P. and Kouba J. (2001). GPS precise point positioning using IGS orbit products, GPS Solutions, Vol.5, no.2, pp.12-28.
39.Hidore J. (1972). A geography of the atmosphere, 2nd edition, Iowa, Wm. C. Brown Company Publishers.
40.Hieb M. (2003). Water vapour rules the greenhouse system. (Downloaded from http://www.grocraft.com/WVFossils/greenhouse_data.html ).
41.Hofmann-Wellenhof B. and Lichtenegger H. (2001). Global Positioning System: Theory and Practice, New York, Springer-Verlag.
42.Hopfield H.S. (1969). Two-quartic tropospheric refractivity profile for correcting satellite data, Journal of Geophysical Research, Vol. 74, pp. 4487-4499.
43.Ifadis I.I. (1986). The atmospheric delay of radio waves: modeling the elevation dependence on a global scale, Technical Report no. 38L, Chalmers U. of Technology, G?oteburg, Sweden.
44.Janes H., Langley R. and Newby S. (1991). Analysis of tropospheric delay prediction models: Comparisons with ray tracing and implications forGPS relative positioning. Bulletin G?od?sique, Vol.65, No. 3, pp. 151-161.
45.Lanyi G. (1984). Tropospheric delay effects in radio interferometry, The Telecommunications and Data Acquisition Progress Report, Jet Propulsion Laboratory, Pasadena, California, Vol. 42-78, pp. 152-159.
46.Leick A. (2004). GPS Satellite Surveying, John Wiley & Sons, Inc.
47.Li P.W., Wang X.Y., Chen Y.Q. and Lai S.T. (2005). Use of GPS singal delay for real-time atmospheric water vapor estimation and rainfall nowcast in Hong Kong, The First International Symposium on Cloud-prone and Rainy Areas Remotes Sensing, University of Hong Kong, HK, China.
48.Liou Y.A. and Huang, C.Y. (2000). GPS observations of PW during the passage of a typhoon, Earth Planets Space, Vol. 52, No. 10, pp. 709-712.
49.Mallat A. (1989). A theory for multiresolution signal decomposition: The wavelet representation. IEEE Transation on Pattern Analysis andMachine Intelligence, Vol. 11, No. 11, pp. 674-693.
50.Marini, J.W. (1972). “Correction of satellite tracking data for an arbitrary tropospheric profile. Radio Science, Vol. 7, No. 2, pp. 223-231.
51.Misiti M., Misiti Y., Oppenheim G. and Poogi J. (1997). Wavelet Toolbox User's Guide. The Math Works.
52.Misra P. and Enge P. (2001). Global positioning system signal, measurements, and performance, Ganga-Jamuna Press, Lincoln, MA.
53.Niell A.E. (1996). Global mapping functions for the atmosphere delay at radio wavelengths, Journal of Geophysical Research, Vol. 101, no. B2, pp. 3227–3246.
54.Niell A. (2000) Improved atmospheric mapping functions for VLBI and GPS. Earth Planets Space, Vol. 52,pp. 699-702.
55.Parkinson B.W. and Spilker Jr. J. (1996). Global positioning system: theory and applications Vol. I. American Institute of Aeronautics and Astronautics, Washington, DC.
56.Rocken C., Anthes R.A., Exner M., Hunt D., Sokolovskiy S., Ware R., Gorbunov M., Schreiner W., Feng D., Herman B., Kuo Y.H., and Zou X. (1997). Analysis and validation of GPS/MET data in the neutral atmosphere, Journal of Geophysical Research, Vol. 102, no. D25, pp. 29849-29866.
57.Pfost D., Casady W. and Shannon K. (1998). Precision agriculture: global positioning system (GPS). University of Missouri, Columbia.
58.Ramirez J.A., Trujillo E. and Elder K. (2007). Topographic, meteorologic, and canopy controls on the scaling characteristics of the spatial distribution of snow depth fields, Water Resources Research, doi:10.1029/2006WR005317.
59.Richmond A.D. (1983). Solar-terrestrial physics: principles and theoretical foundations, D. Reidel Publishing Company, Dordrecht, Holland.
60.Rizos C. (1996). Priciples and Practice of GPS Surveying. School of Geomatic Engineering, University of New South Wales, Sydney NSW, Australia.
61.Rizos C. and Grant D.B. (1990). Time and the global positioning system. In Contributions to GPS Studies, UNISURV S-38, the School of Surveying, University of U.S.W., Australia, 45-101.
62.Rocken C., Ware R., Van Hove T., Solheim F., Alber C., and Johnson J. (1993). sensing atmospheric water vapor with the global positioning system, Geophys. Res. Lett., Vol. 20, no. 23, pp. 2631-2634.
63.S and TR (2004). Tropopause Height (Download from: https://www.llnl.gov/str/March04/pdfs/03_04.2.pdf).
64.Saastamoinen J. (1973). Contributions to the theory of atmospheric refraction. Part II. Refraction corrections in satellite geodesy, Bulletin g?od?sique, Vol. 105, no, 1, pp. 13-34.
65.Santos C., Galvao C. and Suzuki K. (2001). Matsuyama city rainfall data analysis using wavelet transform. Annual Journal of Hydraulic
66.Seidel D.J. (1995). Water vapour: distribution and trends (Download from: http://www.wiley.co.uk/wileychi/egec/pdf/GB085-W.pdf )
67.Shen X. and Gao Y. (2002). Kinematics processing analysis of carrier phase-based precise point positioning, Proceedings of FIG XXII International Congress, Washington, DC.
68.Shrestha S. (2003). Investigations into the estimation of tropospheric delay and wet Refractivity using GPS measurement. Master Thesis, University of Calgary, Abberta, Canada.
69.Skone S. (2001). Atmospheric effects on satellite navigation system, Proc. ENGO 633 Course Lecture Notes, Calgary, Canada.
70.Tao W., Gao Y. and Zhang Y. (2007). Real-time water vapor sensing/ measurements with precise point positioning algorithm and canadian geodetic (GPS) Network, ION GNSS 20th ITM, pp. 2890-2897.
71.Wang C., Liou Y. and Yeh T. (2007). The impact of surface meteorological measurements on GPS height determination, Proceedings of IGARSS07.
72.Xu G. (2003) GPS theory, algorithms and application. Springer-Verlag berkin Heidelberg, New York.
73.Xu Y., Li S. and Cai Y. (2005). Wavelet analysis of rainfall variation in the Hebei Plain. Science in China Ser. D Earth Science, Vol. 48, No. 12, pp. 2241-2250.
74.Yuan L.L., Anthes R.A., Ware R.H., Rocken C., Bonner W.D., Bevis M.G. and Businger S. (1993). Sensing climate change using the global positioning system, Journal of Geophysical Research, Vol. 98, no. D8, pp. 14925-14937.
75.Zhang J.H. (1999). Investigations into the estimation of residual tropospheric delays in a GPS network, Master Thesis, University of Calgary, Albert, Canada.
76.Zumberge J.F., Heflin M.B., Jefferson D.C., Watkins M.M. and Webb F.H. (1997). Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of Geophysical Research, Vol. 102, no. B3, pp. 5005-5017.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top