跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/24 05:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:卓高賢
研究生(外文):Kao-HsienCho
論文名稱:奈米尖端結構高性能鈀/氧化錫/鑽石薄膜(CAIS)二極體一氧化碳感測器的研製
論文名稱(外文):Studies of the High Performance Pd–SnOx / i-diamond / p+ diamond (CAIS) Diode Carbon Monoxide Gas Sensor with Nano-tip Structure
指導教授:方炎坤方炎坤引用關係
指導教授(外文):Yean-Kuen Fang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微電子工程研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:88
中文關鍵詞:尖端結構一氧化碳感測器鑽石薄膜
外文關鍵詞:CAISdiamondNano-tip
相關次數:
  • 被引用被引用:0
  • 點閱點閱:219
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鑽石不僅具有最高的硬度、高飽和速度、較高的崩潰電壓、高能帶隙,比起傳統半導體(Si、SiC、GaAs)擁有較高的熱導率。此外,鑽石的能隙為5.47電子伏特,可以操作在較高的溫度。又鑽石的化學活性較低可以運用在惡劣的環境,並抵禦外界氣溫下降。本論文研究利用具有高沈積速率與能提供大量氫自由基特性的電場輔助熱鎢絲化學氣相低溫沈積法(Bias-assisted HWCVD, BAHWCVD),於P型(100)矽基板上使用甲烷(CH4)與氫氣成長具非晶結構的鑽石薄膜,並以此製作奈米尖端結構高性能鈀/氧化錫/鑽石薄膜(CAIS)二極體一氧化碳感測器。利用BAHWCVD可於較低溫沈積品質較佳的鑽石薄膜。首先利用KOH 及IPA混合溶液在(100)矽基板蝕刻成奈米尖端,然後由 BAHWCVD及Sputter 分別 成長i-diamond/ p+-diamond 及 SnOx 薄膜,最後再蒸鍍鈀電極(Pd)完成感測器。吾人利用Raman量測原子間的鍵結、XRD量測薄膜結晶、SEM觀察表面結構。此外,也研究不同厚度SnOx對於元件感測特性的影響,發現在薄膜厚度為50nm時最好。並成長不同形狀的鈀電極相比較,發現方型電極對於一氧化碳有較佳的反應。
經由實驗顯示,奈米尖端結構增加感測器與氣體更多的接觸面積,相對地提昇感測電流與靈敏度。較之沒有奈米尖端者感測電流與靈敏度分別增加75倍及1.5倍。又元件在200℃,偏壓+3V及1000ppm的CO / air的環境下感測電流及靈敏度分別為112mA及 72.3%,較之已發表者的4mA及33% 分別提高26.75倍及 2.2倍。
The Catalyst/ SnOx/ i-diamond/ p+-diamond p+-silicon (CAIS) diodes with a nano tip structure are prepared by a Bias-assisted Hot-wire chemical vapor deposition (BAHWCVD) system for carbon monoxide (CO) gas sensing applications. With the added DC bias, a better quality film can be deposited under a lower temperature. We use Raman, XRD, and SEM for bond structure measurement, examination of surface morphology, analyzing crystallinity, and investigation of carbon atomic concentration with significant sp3 bonding in the film, respectively. Furthermore, effects of various patterns Pd catalyst electrode and SnO2 thicknesses on the CO sensing ability are investigated, and find the device with 50nm thick SnOx and the square Pd electrode has the highest diode sensing current and thus the highest sensitivity.
Experimental results show that with and without the nano tip structure, the diode sensing current can be enhanced up to 75 times. Besides, under 200℃, 3V forward bias, and 1000ppm CO / air ambient, the developed CAIS diode has a sensing current of 112 mA and sensitivity of 72.3%, which are respectively 75 times and 1.5 times to a reported CAIS diode diamond CO sensor prepared by a PECVD on Si substrate.
中文摘要 I
英文摘要 III
目錄 V
圖表目錄 VIII
第一章 導論 1
1-1前言 1
1-2氣體感測器 2
1-3一氧化碳特性 3
1-4 鑽石薄膜應用 4
1-5論文架構 4
第二章 元件原理與一氧化碳感測機制 5
2-1 元件基礎理論 5
2-2 感測器工作原理 7
2-2-1 氧氣的吸附 8
2-2-2 氧空格(Oxygen Vacancy) 10
2-2-3 CAIS結構 (catalyst / SnOx(adsorptive oxide) / i(intrinsic) -diamond / p+-diamon / substrate) 11
第三章 實驗與量測儀器和製程步驟 12
3-1 HWCVD特性 12
3-2 影響非晶鑽石薄膜的參數 14
3-2-1鎢絲溫度(Filament Temperature,Tf) 14
3-2-2甲烷與氫氣流量(CH4 and H2 Flow Rate) 15
3-2-3基板溫度 (Substrate Temperature,Ts) 16
3-2-4成長壓力(Process Pressure,P) 17
3-2-5燈絲材料(Filament Material) 17
3-2-6偏壓輔助沈積 18
3-2-7 鎢絲清潔 18
3-3相關製程技術 19
3-3-1 真空蒸著系統(Thermal Vacuum Evaporation System) 19
3-3-2 射頻磁控濺鍍系統(Radio-Frequency Sputtering System) 20
3-4量測儀器 22
3-4-1掃描式電子顯微鏡 (FE-SEM) 22
3-4-2膜厚量測儀 (α-Step) 22
3-4-3 X光繞射儀(X-ray Diffractometer, XRD) 23
3-4-4 傅立葉轉換紅外線光譜儀(Fourier transform infrared spectroscopy , FTIR) 24
3-4-5 ?曼光譜儀(Raman Spectroscopy) 25
3-4-6 氣體感測量測系統 26
3-4-7 HP4145B半導體參數分析儀 26
3-5製程步驟與成長參數 27
3.5.1 鎢絲前處理 27
3-5-2準備乾淨的矽基板 28
3-5-3使用HWCVD成長i(intrinsic)-diamond/p+-diamond層 28
3-5-4使用濺鍍系統成長SnO2氧化層 29
3-5-4使用蒸著系統成長電極 29
3-5-5量測實驗 30
第四章 結果與討論 32
4-1 鑽石薄膜分析 32
4-1-1甲烷CH4流量對薄膜特性之影響 33
4-1-2偏壓電壓對薄膜特性之影響 34
4-1-3乙硼烷(B2H6)參雜流量對薄膜特性之影響 35
4-2 氧化層與電極薄膜電性分析 36
4-2-1氧化層薄膜分析 36
4-2-2不同形狀鈀(Pd)電極薄膜分析 37
4-3 奈米尖端結構元件介紹及分析 38
4-3-1蝕刻矽基板Si(100) 成奈米尖端結構 38
4-3-2 奈米尖端結構一氧化碳感測器分析 39
第五章 結論與展望 41
5-1 結論 41
5-2 展望 42
*參考文獻 43

圖表目錄
表1-1、氣體對人體危害之指標濃度 49
表1-2、一氧化碳之物理性質 50
表4-1、非晶鑽石成長參數表 51
表4-2、薄膜最佳參數表 52
表4-3、乙硼烷(B2H6)參雜流量表 52
表4-4、奈米尖端蝕刻參數表 53
圖1-1、暴露於一氧化碳對人類的影響 54
圖2-1、定壓下氧氣的吸附與溫度關係圖[18] 55
圖3-1、正偏壓輔助沈積[27] 56
圖3-2、偏壓系統圖 56
圖3-3、鎢絲清潔[28] 57
圖3-4、HWCVD成長系統圖 58
圖3-5、蒸著成長系統圖 59
圖3-6、濺鍍成長系統圖 60
圖3-7、氣體感測量測系統 61
圖4-1、石墨結晶結構[30][31] 62
圖4-2、鑽石結晶結構[30][31] 62
圖4-3、Diamond Raman 分析 63
圖4-4、Diamond XRD 分析 64
圖4-5、Diamond Raman分析 65
圖4-6、Diamond XRD 分析 66
圖4-7、HP4145電性分析 67
圖4-8、EDX分析 68
圖4-9、SEM分析圖 68
圖4-10、SnO2厚度電性分析 69
圖4-11、SnO2厚度靈敏度分析 70
圖4-12、方形元件 71
圖4-13、梳形元件 72
圖4-14、Pd電極形狀電性分析 73
圖4-15、Pd電極形狀靈敏度分析 74
圖4-16、溫度反應I-V曲線圖 75
圖4-17、T=80℃ Time=10min (參數C1)SEM分析 76
圖4-18、T=80℃ Time=30min (參數C2)SEM分析 76
圖4-19、T=90℃ Time:20min (參數C3) SEM分析 77
圖4-20、T=90℃ Time=10min (參數C4) SEM分析 77
圖4-21、T=70℃ Time=30min (參數C6) SEM分析 78
圖4-22、參數C6 側面 SEM分析 78
圖4-23、尖端結構感測器製成圖 79
圖4-24、奈米尖端SEM剖面圖 80
圖4-25、奈米尖端SEM上視圖 81
圖4-26、奈米尖端SEM圖 81
圖4-27、分別結構反應I-V曲線圖 82
圖4-28、分別結構靈敏度分析圖 83
圖4-29、溫度反應I-V曲線圖 84
圖4-30、溫度反應I-V曲線圖 85
圖4-31、AIR I-T曲線圖 86
圖4-32、CO I-T曲線圖 86
圖4-33、溫度飽和I-T曲線圖 87
[1]蔡嬪嬪 ,曾明漢,“氣體感測器之簡介、應用及市場,材料與社會, 第68期 1992.

[2]蔡嬪嬪 ,曾明漢,“氣體感測器之簡介、應用及市場, 材料與社會, 第150期六月1999.

[3]蔡嬪嬪 ,“氣體感測器市場發展近況,工業材料, 88 期4月1994.

[4]Albert L. Love, “Carbon Monoxide in the Home Environment, University Microfilms International, Michigan 1986.

[5]K. Wark, C. F. Warner and W. T. Davis, “Air pollution: its origin and control, Addison-Wesley Pub. Co., Massachusetts 1998.

[6] Gilbert M. Masters, “Introduction to Environmental Engineering and Science, Prentice Hall, New Jersey 1997.

[7] J. H Seinfeld, “Atmospheric Chemistry and Physics of Air Pollution, Wiley, New York 1986.

[8]“勞工作業環境空氣中有害物容許濃度標準,行政院勞工委員會 2003.

[9]W.P. Kang, J.L. Davidson, Y. Gurbuz and D.V. Kerns, Tempera- tare dependency and effect of series resistance on the electrical characteristics of a polycrytalline diamond metal-insulator -semiconductor diode, Z Appl. Phys. 78, pp.1101- 1107, 1995.

[10]M.L. Hartsell, H.A. Wynands and B.A. Fox, Current-voltage and capacitance-voltage characterization of MS, MIS and MOSFET structures on semiconducting diamond, SPIE Vol. 2151 Diamond- Fihn Semiconductors, pp.91-98, 1994.

[11]T. Maki, G.L. Hou, T.H. Kim, S. Shikama, Y. Sagakuchi and T. Kobayashi, Fabrication and characterization of diamond Schottky diode using polyerystalline films, 2nd Int. Conf. on Application of Diamond Flinty and Related Materials, Tokyo, 1993.

[12]A.J. Tessmer, L.S. Plane and D.L. Dreifus, High-temperature operation of polycrystalline diamond field effect transistors, IEEE Electron. Device Lett, 14,66-68, 1993.

[13]J.L. Davidson, Electronic and sensing properties of diamond, SPIE Vol. 2151 Diamond-Fihn Semiconductors, pp. 133-144, 1994.

[14]V. L. Rideout, “A Review of the Theory, Technology and Applications of Metal-Semiconductor Rectifiers, Thin Solid Film, 48,261, 1978.

[15]S. M. Sze, “Physics of semiconductor devicesch5, wiley, New York, 1980.

[16]Neamen, “Semiconductor physics and devicech9, p336, McGraw-Hill, 1992.

[17]H.Windischmann and P.Mark, A model for the operation of a thin film SnOx conductance-modulation carbon monoxide sensor, Journal of the electrochemical society Vol.126, No.4, pp.627-633, 1979.

[18]S. R. Morrison, “The Chemical Physics of Surfaces,2nd , New York: Plenum Press, pp.251, 1990.

[19]N. Yamazoe, J. Fuchigami, M. Kishikawa and T.Seiyama, “Interactions of tin oxide surface with O2, H2O and H2, Surface Science, Vol. 86, pp. 335-344, 1979.

[20]K. M. Sancier, “ESR evidence of CO oxidation by more than one oxygen species sorbed on ZnO, Journal of Catalysis, Vol. 9, pp.331-335, 1967

[21]S. C. Chang, “Thin-film semiconductor NOx sensor, IEEE Transactions on Electron Devices, Vol. ED-26, No. 12, pp.1875-1880 ,December 1979.

[22]Y. Gurbuz, W.P. Kang, J.L. Davidson, and D.V. Kerns, “A novel oxygen gas sensor utilizing thin film diamond diode with catalyzed tin oxide electrode, Sensors and Actuators B: Chemical, vol. 36, pp.303-307, Oct. 1996.

[23]S. R. Morrison, “The Chemical Physics of Surfaces,2nd , New York: Plenum Press, pp. 251, 1990.

[24]P. Gonon, E. Gheeraert, A. Deneuville, and F. Fontaine “Characterization of heavily B-doped polycrystalline diamond films using Raman spectroscopy and electron spin resonance J. Appl. Phys., Vol. 78, No. 12, 15 December 1995.

[25] W Hellmich, G Muller, ChB Braunmuhl, T Doll, I Eisele. “Field-effectinduced gas sensitivity changes in metal oxides. Sensors Actuators B, 43:132–9, 1997.

[26]K Galatsis, YX Li, W Wlodarski, E Comini, G Sherveglieri, C Cantalini. et al.Comparison of single and binary oxide MoO3, TiO2 and WO3 sol–gel gas sensors.“ Sensors Actuators B, 83:276–80, 2002.

[27]J. Song, S.H. Pak, N. Hwang, and H.J. Kim, “Effect of negatively charged species on the growth behavior of silicon films in hot wire chemical vapor deposition, Thin Solid Films, vol. 516, pp.5122-5126, Jun.2008.

[28]S. Lien, M. Tseng, C. Chao, K. Weng, H.H. Yu, and D. Wuu, “Tungsten filament effect on electronic properties of hot-wire CVD silicon films for heterojunction solar cell application, Thin Solid Films, vol. 517, pp. 4720-4723, 2009.

[29]S. OKOLI, R. HAUBNER, and B. LUX, “INFLUENCE OF THE FILAMENT MATERIAL ON LOW-PRESSURE HOT-FILAMENT CVD DIAMOND DEPOSITION, Le Journal de Physique IV, vol.02, pp.8, 1991.

[30]W.D. Kingery, H.K. Bowen, D.R.Uhlmann, and R. Frieser,“Introduction to Ceramics, Journal of The Electrochemical Society, vol.124, pp.152C, Mar.1977.

[31]J. Robertson, “Diamond-like amorphous carbon, Materials Science and Engineering: R , vol. 37, pp.129-281, 2002.

[32]M. Larijani, A. Navinrooz, and F. Le Normand, “The bias-assisted HF CVD nucleation of diamond: Investigations on the substrate temperature and the filaments location, Thin Solid Films, vol. 501, pp. 206-210, Apr. 2006.

[33]M. Gaidi, B. Chenevier, and M. Labeau, “Electrical properties evolution under reducing gaseous mixtures (H2, H2S, CO) of SnO2 thin films doped with Pd/Pt aggregates and used as polluting gas sensors, Sensors and Actuators B: Chemical, vol. 62, pp. 43-48, Jan. 2000.

[34]Y.M. Fung, W.Y. Cheung, I.H. Wilson, D. Chen, J.B. Xu, S.P. Wong, and R.W.M. Kwok, “Electron field emission characteristics of textured silicon surface, Papers from the 13th international vacuum microelectronics conference, Guanghou (China): AVS, pp. 884-887, 2001.

[35] Nguyen Duc Hoa, Nguyen Van Quy, You Suk Cho, Dojin Kim “Nanocomposite of SWNTs and SnO2 fabricated by soldering process for ammonia gas sensor application phys. stat. sol. (a) 204, No. 6, 1820–1824, 2007
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top