跳到主要內容

臺灣博碩士論文加值系統

(44.200.140.218) 您好!臺灣時間:2024/07/19 02:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:魏兆隆
研究生(外文):Chao-LungWei
論文名稱:適用於資料取樣系統之具有容錯的觀測器與軌跡追蹤器:數位再設計方法
論文名稱(外文):Fault-Tolerant Observer and Trajectory Tracker for Sampled-Data Systems: Digital Redesign Approach
指導教授:蔡聖鴻
指導教授(外文):Sheng-Hong Tsai
學位類別:博士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:144
中文關鍵詞:容錯機制數位再設計適應性觀測器資料取樣的非線性時變系統進化規劃演算法卡爾曼濾波器
外文關鍵詞:Fault-tolerantdigitally redesigned adaptive observersampled-data nonlinear time-varying systemsevolutionary programmingKalman filter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:165
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
針對具有致動器和狀態錯誤的資料取樣系統,本論文提出創新的數位再設計適應性觀測器、具有容錯機制的觀測器、軌跡追蹤器,以達到有效的錯誤偵測和效能恢復。本論文的研究成果可以分為以下:針對致動器的錯誤偵測和效能恢復,結合輸入補償的架構,提出以進化規劃演算法為基礎的數位再設計適應性觀測器,以改善錯誤估測和目標追蹤的效能;針對致動器與狀態的錯誤偵測,利用即時量測的輸出以估測目前的狀態,提出預測型的數位再設計適應性觀測器,達成高效能的錯誤偵測目標追蹤;在診斷錯誤的過程中,提出留數產生的架構和自動調整切換增益的機制,以匹配致動器或狀態的事件;針對資料取樣的非線性時變系統,利用最佳線性化技巧,提出另一種以預測型卡爾曼濾波器為基礎的適應性估測器,依自動偵測錯誤的類別與代表錯誤量的衰減因子,估測出錯誤量並補償錯誤的系統。在本論文中,同時以說明性的例題驗證所提方法的有效性。
Digitally redesigned adaptive observer, fault-tolerant observer, and trajectory tracker for some classes of sampled-data systems with actuator and state faults have been proposed in this dissertation to obtain an efficient fault detection and performance recovery. Here, it can be stated in following aspects: the evolutionary programming-based digitally redesigned adaptive observer, fault estimator, and trajectory tracker for the actuator fault detection and performance recovery via the input-compensation scheme have been established; the prediction-based digitally redesigned adaptive observer, which uses the currently measured output to estimate the current state for sampled-data linear time-varying system, is proposed to achieve a high-performance recovery for the faulted system with actuator and state faults. For achieving this goal, a residual generation scheme and a mechanism for auto-tuning switched gain to fit either the actuator or state fault scenario are proposed; the predictive Kalman filter-based adaptive observer and trajectory tracker for sampled-data nonlinear time-varying system have been proposed to automatically detect the types of faults (i.e., state fault or actuator fault), the amount of unanticipated fault in terms of decay factors, and compensate for it. The utilization of optimal linearization method accomplishes the proposed methodology for actuator fault detection and performance recovery for sampled-data nonlinear time-varying systems. The effectiveness of the digitally redesigned adaptive observer and trajectory tracker for performance recovery of the faulted systems is also demonstrated by illustrative examples.
中文摘要 i
Abstract ii
Acknowledgement iii
Contents iv
List of Tables vii
List of Figures viii
Symbols and Abbreviations xi
Chapter 1 Introduction 1
1.1 Literature survey and motivation 2
1.1.1 Fault detection and diagnosis 2
1.1.2 Fault tolerant control 4
1.1.3 Adaptive observer 6
1.1.4 Digital redesign and evolutionary programming 6
1.1.5 Motivation of the dissertation 8
1.2 Organization of the dissertation 10
Chapter 2 Digitally Redesigned Observer-Based Predictive Tracker 11
2.1 Introduction 12
2.2 Analog linear quadratic tracker and observer designs 13
2.3 Derivation of the observer-based tracker for the sampled-data linear system 16
2.4 Summary 26
Chapter 3 EP-Based Digitally Redesigned Adaptive Observer, Fault Estimator, and Trajectory Tracker for Sampled-Data Nonlinear Time-Varying Systems with Actuator Fault 27
3.1 Introduction 28
3.2 Digitally redesigned adaptive observer 29
3.2.1 Adaptive observer for linear time-varying systems 29
3.2.2 Derivation of the novel digitally redesigned adaptive observer (DRAO) 33
3.3 EP-based observer and trajectory tracker for nonlinear time-varying systems with actuator fault 37
3.3.1 Methodology of actuator fault detection and performance recovery with input compensation 37
3.3.2 Actuator fault detection and performance recovery for nonlinear time-varying systems 39
3.3.2-1 Optimal linearization for nonlinear systems 39
3.3.2-2 Actuator fault detection and performance recovery for nonlinear time-varying systems with optimal linearization 42
3.3.3 Adaptive observer/tracker: an evolutionary programming approach 45
3.3.3-1 Quasi-random sequences (QRS) 46
3.3.3-2 Tuning gain of the digitally redesigned adaptive observer 48
3.4 Illustrative Examples 51
3.5 Summary 63
Chapter 4 Prediction-Based Digitally Redesigned Adaptive Observer, Fault Estimator, and Trajectory Tracker for Sampled-Data Linear Time-Varying Systems with Actuator and State Faults 64
4.1 Introduction 65
4.2 An improved prediction-based digitally redesigned adaptive observer 67
4.2.1 Adaptive observer 67
4.2.2 Digitally redesigned adaptive observer (DRAO) 68
4.2.3 An improved prediction-based digitally redesigned adaptive observer 70
4.3 A universal auto-tuning switch mechanism 75
4.3.1 Formulation of actuator and state faults and performance recovery with input and output compensation 77
4.3.2 Residual-generation-based auto-tuning switch mechanism for detection and diagnosis of actuator and state faults by using PBDRAO 79
4.4 Illustrative examples 84
4.5 Summary 95
Chapter 5 Predictive Kalman Filter-based Adaptive Observer, Fault Estimator, and Trajectory Tracker for Sampled-Data Nonlinear Time-Varying Systems with Actuator and State Faults 96
5.1 Introduction 97
5.2 An improved Kalman filter-based adaptive observer 98
5.2.1 Adaptive observer 99
5.2.2 Kalman filter-based adaptive observer (KFBAO) 100
5.2.3 An improved Kalman filter-based adaptive observer 102
5.3 Auto-tuning switched mechanism for sampled-data nonlinear time-varying system against actuator and state faults 108
5.3.1 Actuator and state faults detection and performance recovery for nonlinear (slowly) time-varying systems with optimal linearization 110
5.3.2 Residual-generation-based auto-tuning switched mechanism for detection and diagnosis of actuator and state faults by using PKFBAO 114
5.4 Illustrative examples 119
5.5 Summary 131
Chapter 6 Conclusions 132
6.1 Conclusions 132
6.2 Further works 134
References 135
Biography 142
Publication List 143

[1] , K. J., and Wittenmark, B., Computer Controlled Systems: Theory and Design. Upper Saddle River, NJ: Prentice-Hall, 1997.
[2] Bastin, G., and Gevers, M., “Stable adaptive observers for nonlinear time varying systems, IEEE Transaction on Automatic Control, vol. 33(7), pp. 650-658, 1988.
[3] Benitez-Perez, H., Garcia-Nocetti, F., Iimas-Unam, I., and Thompson, H., “Fault classification based upon self organizing feature maps and dynamic principal component analysis for inertial sensor drift, International Journal of Innovative Computing, Information and Control, vol. 3(2), pp. 257-276, 2007.
[4] Blanke, M., Kinnaert, M., Lunze, J., and Staroswiecki, M., Diagnosis and Fault-Tolerant Control. London, UK: Springer-Verlag, 2006.
[5] Bodson, M., and Groszkiewicz, J. E., “Multivariable adaptive algorithms for reconfigurable flight control, IEEE Transactions on Control Systems Technology, vol. 5(2), pp. 217-229, 1997.
[6] Burgin, G. H., “On playing two-person zero-sum games against nonminimax players, IEEE Transactions on Systems Science and Cybernetics, vol. 2(3), pp. 4-23, 1974.
[7] Caglayan, A. K., and Lancraft, R. E., “A separated bias identification and state estimation algorithm for nonlinear systems, Automatica, vol. 19(5), pp. 561-570, 1983.
[8] Cao, Y. J., “Eigenvalue optimization problems via evolutionary programming, Electronics Letters, vol. 33, pp. 642-643, 1997.
[9] Chen, J., and Patton, R. J., Robust Model-Based Fault Diagnosis for Dynamic Systems. Norwell, MA: Kluwer, 1999.
[10] Chen, S., Tao, G., and Joshi, S. M., “Adaptive actuator failure compensation control for MIMO systems, International Journal of Control, vol. 77(15), pp. 1307-1317, 2004.
[11] Chowdhury, F. N., Jiang, B., and Belcastro, C. M., “Reduction of false alarms in fault detection problems, International Journal of Innovative Computing, Information and Control, vol. 2(3), pp. 481-490, 2006.
[12] Conrad, M., and Pattee, H. H., “Evolution experiments with an artificial ecosystem, Journal of Theory on Biology, vol. 28, pp. 393-409, 1970.
[13] Conrad, M., “Evolutionary learning circuits, Journal of Theory on Biology, vol. 46, pp. 167-188, 1974.
[14] Van Der Corput, J. C., “Verteilungsfunktionen, Proc. Kon Akad. Wet., Amsterdam, vol. 38 A13-A21, pp. 1058-1066, 1935.
[15] Dedieu, H., and Ogorzalek, M. J., “Controlling chaos in Chua’s circuit via sampled inputs, International Journal of Bifurcation Chaos, vol. 4, pp. 447-455, 1994.
[16] Edwaeds, C., Spurgeon, S. K., and Patton, R. J., “Sliding mode observers for fault detection and isolation, Automatica, vol. 41, pp. 541-553, 2000.
[17] Fekih, A., Xu, H., and Chowdhury, F. N., “Neural networks based system identification techniques for model based fault detection of nonlinear systems, International Journal of Innovative Computing Information and Control, vol. 3, pp. 1073-1085, 2007.
[18] Fogel, D. B., Evolutionary Computation: Toward a New Philosophy of Machine Intelligence. Piscataway: NJ, IEEE Press, 1999.
[19] Fogel, L. J., “Autonomous automata, Industrial Research, vol. 4, pp. 14-19, 1962.
[20] Gauthier, J. P., and Kupka, I. A. K., “Observability and observers for nonlinear systems, SIAM Journal Control Optimization, vol. 32(4), pp. 975-994, 1994.
[21] Gertler, J. J., Fault Detection and Diagnosis in Engineering Systems. New York, NY: Marcel Dekker, 1998.
[22] Gilbert, E. G., “Controllability and observability in multivariable linear systems, SIAM Journal on Control, vol. 1, pp. 128-151, 1963.
[23] Guo, S. M., and Peng, Z. H., “An observer-based decentralized tracker for sampled-data systems: an evolutionary programming approach, International Journal of General Systems, vol. 34, pp. 421-449, 2005.
[24] Guo, S. M., Shieh, L. S., Chen, G., and Lin, C. F., “Effective chaotic orbit tracker: a prediction-based digital redesign approach, IEEE Transactions on Circuits and System-I: Fundamental Theory and Applications, vol. 47, pp. 1557-1570, 2000.
[25] Guo, S. M., Shieh, L. S., Chen, G., Lin, C. F., and Chandra, J., “State-space self-tuning control for nonlinear stochastic and chaotic hybrid system, International Journal of Bifurcation Chaos, vol. 11, pp. 1079-1113, 2001.
[26] Huang, S., and Tan, K. K., “Fault detection and diagnosis based on modeling and estimation methods, IEEE Transactions on Neural Networks, vol. 20, pp. 872-881, 2009.
[27] Isermann, R., and Balle, P., Terminology in the Field of Supervision, Fault Detection and Diagnosis, accepted by IFAC Safeprocess Committee, 1996.
[28] Jeong, C. S., and Yaz, E. E., “Nonlinear observer design with general criteria, International Journal of Innovative Computing, Information and Control, vol. 2(4), pp. 693-704, 2006.
[29] Jiang, B., Staroswiecki, M., and Cocquempot, V., “Fault accommodation for nonlinear dynamic systems, IEEE Transactions on Automatic Control, vol. 51, pp. 1578-1583, 2006.
[30] Jiang, J., “Design of reconfigurable control systems using eigenstructure assignment, International Journal of Control, vol. 59(2), pp. 395-410, 1994.
[31] Jiang, J., and Zhao, Z., “Fault tolerant control system synthesis using imprecise fault identification and reconfigurable control, in Proceedings of the 1998 IEEE ISIC/CIRNISAS Joint Conference Gaithersburg, pp. 14-17, 1998.
[32] Jiang, T., Khorasani, K., and Tafazoli, S., “Parameter estimation-based fault detection, isolation and recovery for nonlinear satellite models, IEEE Transactions on Control Systems Technology, vol. 16, pp. 799-808, 2008.
[33] Korbicz, J., Koscielny, J. M., Kowalczuk, Z., and Cholewa, W., Fault Diagnosis: Models, Artificial Intelligence, Applications. New York, NY: Springer-Verlag Berlin Heidelberg, 2004.
[34] Kuo, B. C., Digital Control Systems. New York, NY: Holt, Rinehart and Winston, 1980.
[35] Lewis, F. L., and Syrmos, V. L., Optimal Control 2nd ed. New York, NY: John Wiley and Sons, 1995.
[36] Li, L., Kevin, P. L., David, A. C., and Sanjeev, K. S., “Fault detection, diagnostics, and prognostics: software agent solutions, IEEE Transactions on Vehicular Technology, vol. 56, pp. 1613-1622, 2007.
[37] Lu, X., Xie, L. H., Zhang, H. S., and Wang, W., “Robust Kalman filtering for discrete time systems with measurement delay, IEEE Transactions on Circuits and System-II: Express Briefs, vol. 54(6), pp. 522-526, 2007.
[38] L?ders, G., and Narendra, K. S., “An adaptive observer and identifier for a linear system, IEEE Transactions on Automatic Control, vol. 18(5), pp. 496-499, 1973.
[39] Mahmoud, M. S., and Shi, P., “Robust Kalman filtering for continuous time-lag systems with Markovian jump parameters, IEEE Transactions on Circuits and System-I: Fundamental Theory and Applications, vol. 50(1), pp. 98-105, 2003.
[40] Mahmoud, M. S., Xie, L. H., and Soh, Y. C., “Robust Kalman filtering for discrete state-delay systems, IET Control Theory and Applications, vol. 147(6), pp. 613-618, 2004.
[41] Maybeck, P. S., “Multiple model adaptive algorithms for detecting and compensating sensor and actuator/surface failures in aircraft flight control systems, International Journal of Robust and Nonlinear Control, vol. 9, pp. 1051-1070, 1999.
[42] Moseler, O., and Isermann, R., “Application of model-based fault detection to a brushless DC motor, IEEE Transactions on Industrial Electronics, vol. 47(5), pp. 1015-1020, 2000.
[43] Oliveira, R. C. L. F., Oliveira, M. C. D., and Peres, P. L. D., “Parameter-dependent Lyapunov functions for robust stability analysis of time-varying systems in polytopic domains, in Proceedings of the 2007 American Control Conference, pp. 6079-6084, 2007.
[44] Omerdic, E., and Roberts, G., “Thruster fault diagnosis and accommodation for open-frame underwater vehicles, Control Engineering Practice, vol. 12, pp. 1575-1598, 2004.
[45] Rechenberg, I., Evolutionsstrategies: Optimierung Technischer Systeme Nach Prinzipien Der Biologischen Evolution. Stuttgart-Bad Cannstatt: Frommann-Holzboog, 1973.
[46] Rodrigues, M., Theilliol, D., Aberkane, S., and Sauter, D., “Fault tolerant control design for polytopic LPV systems, International Journal of Applied Mathematics and Computer Science, vol. 17, pp. 27-37, 2007.
[47] Rodrigues, M., Theilliol, D., Adam-Medina, M., and Sauter, D., “A fault detection and isolation scheme for industrial systems based on multiple operating models, Control Engineering Practice, vol. 16, pp. 225-239, 2008.
[48] Shi, P., Bouksa, E. K., and Agarwal, R. K., “Kalman filtering for continuous-time uncertain systems with Markovian jumping parameters, IEEE Transactions on Automatic Control, vol. 44(8), pp. 1592-1597, 1999.
[49] Shieh, L. S., and Tsay, Y. T., “Transformations of a class of multivariable control system to block companion forms, IEEE Transactions on Automatic Control, vol. 27, pp. 199-203, 1982.
[50] Shieh, L. S., Chen, G., and Tsai, J. S. H., “Hybrid suboptimal control of multi-rate multi-loop sampled-data systems, International Journal of Systems Science, vol. 23, pp. 839-854, 1992.
[51] Shieh, L. S., Dib, H. M., and Ganesan, S., “Linear quadratic regulators with eigenvalue placement in a specified region, Atuomatica, vol. 24, pp. 819-823, 1988.
[52] Shieh, L. S., Guo, S. M., Chen, G., and Ortega, M., “Ordering chaos in Chua’s system: A sampled-data feedback and digital redesign approach, International Journal of Bifurcation Chaos, vol. 10, pp. 2221-2231, 2000.
[53] Shieh, L. S., Wang, W. M., and Appu Panicker, M. K., “Design of PAM and PWM digital controller for cascaded analog system, ISA Transactions, vol. 37, pp. 201-213, 1998.
[54] Shieh, L. S., Xu, J., and Chen, G., “Digital redesign of the chaotic discrete system, IEEE Transactions on Aerospace and Electronic Systems, vol. 32, pp. 1488-1499, 1996.
[55] Shieh, L. S., Zhang, J. L., and Coleman, N. P., “Optimal digital redesign of continuous-time controllers, Computer and Mathematics in Applications, vol. 22, pp. 25-35, 1991.
[56] Shieh, L. S., Zhang, J. L., and Sunkel, J. W., “A new approach to the digital redesign of continuous-time controllers, Control-Theory and Advanced Techniques, vol. 8, pp. 37-57, 1992.
[57] Shieh, L. S., Zhao, X. M., and Zhang, J. L., “Locally optimal digital redesign of continuous-time system, IEEE Transactions on Industrial Electronics, vol. 36, pp. 511-515, 1989.
[58] Simo, S., and Aapo, N., “Recursive noise adaptive Kalman filtering by variational bayesian approximations, IEEE Transactions on Automatic Control, vol. 54(3), pp. 596-600, 2009.
[59] Tang, X., Tao, G., and Jishi, S. M., “Adaptive actuator failure compensation for nonlinear MIMO systems with an aircraft control application, Automatica, vol. 43, pp. 1869-1883, 2007.
[60] Teixeira, M. C. M., and Zak, S. H., “Stabilizing controller design for uncertain nonlinear systems using fuzzy models, IEEE Transactions Fuzzy Systems, vol. 7, pp. 133-142, 1999.
[61] Tsai, J. S. H., Lin, M. H., Chen, C. H., Guo, S. M., and Shieh, L. S., “Actuator fault detection and performance recovery with Kalman filter-based adaptive observer, International Journal of General Systems, vol. 36, pp. 375-398, 2007.
[62] Tsai, J. S. H., Chen, C. M., and Shieh, L. S., “Digital redesign of the cascaded continuous-time controller: time-domain approach, Control-Theory and Advanced Techniques, vol. 17, pp. 643-661, 1991.
[63] Tsai, J. S. H., Shieh, L. S., Zhang, J. L., and Coleman, N. P., “Digital redesign of pseudo-continuous-time suboptimal regulators for large-scale discrete system, Control-Theory and Advanced Techniques, vol. 5, pp. 37-65, 1989.
[64] Tsai, J. S. H., Wei, C. L., Guo, S. M., Shieh, L. S., and Liu, C. R., “EP-based adaptive tracker with observer and fault estimator for nonlinear time-varying sampled-data systems against actuator failures, Journal of the Franklin Institute, vol. 345(5), pp. 508-535, 2008.
[65] Veillette, R. J., Medanic, J. B., and Perkins, W. R., “Design of reliable control systems, IEEE Transaction on Automatic Control, vol. 37, pp. 290-304, 1992.
[66] Wang, H., and Wang, Y., “Neural-network-based fault-tolerant control of unknown nonlinear systems, IEE Proceedings Control Theory and Applications, vol. 146(5), pp. 389-398, 1999.
[67] Wang, W., Zhang, H., and Xie, L., “Kalman filtering for continuous-time systems with time-varying delay, IET Control Theory and Applications, vol. 4(4), pp. 590-600, 2010.
[68] Wu, N. E., Zhang, Y., and Zhou, K., “Detection, estimation, and accommodation of loss of control effectiveness, International Journal of Adaptive Control and Signal Processing, vol. 17, pp. 775-795, 2000.
[69] Xie, L. H., and Soh, Y. C., “Robust Kalman filtering for uncertain systems, Systems and Control Letters, vol. 22(2), pp. 123-129, 1994.
[70] Xie, L. H., Soh, Y. C., and Souza, C. E., “Robust Kalman filtering for uncertain discrete-time systems, IEEE Transactions on Automatic Control, vol. 39(6), pp. 1310-1314, 1994.
[71] Xu, J., Shieh, L. S., and Chen, G., “Digital redesign of the chaotic Chua’s circuit, IEEE Transactions on Aerospace and Electronics Systems, vol. 32, pp. 1488-1499, 1996.
[72] Yang, T., and Chua, L. O., “Control of chaos using sampled-data feedback control, International Journal of Bifurcation and Chaos, vol. 8, pp. 2433-2438, 1998.
[73] Yen, G., and Ho, L. W., “Online multiple-model-based fault diagnosis and accommodation, IEEE Transactions on Industrial Electronics, vol. 50, pp. 296-312, 2003.
[74] Zhang, H. S., Xie, L. H., Zhang, D., and Soh, Y. C., “A re-organized innovation approach to linear estimation, IEEE Transactions on Automatic Control, vol. 49(10), pp. 1810-1814, 2004.
[75] Zhang, K., Jiang, B., and Shi, P., “A new approach to observer-based fault-tolerant controller design for Takagi-Sugeno fuzzy systems with state delay, Circuits Systems and Signal Processing, vol. 28, pp. 679-697, 2009.
[76] Zhang, Q., “Adaptive observer for multiple-input-multiple-output (MIMO) linear time varying systems, IEEE Transactions on Automatic Control, vol. 47(3), pp. 525-529, 2002.
[77] Zhang, X. D., Parisini, T., and Marios, M. P., “Adaptive fault-tolerant control of nonlinear uncertain systems: an information-based diagnostic approach, IEEE Transactions on Automatic Control, vol. 49, pp. 1259-1274, 2004.
[78] Zhang, X., Polycarpou, M. M., and Parisini, T., “A robust detection and isolation scheme for abrupt and incipient faults in nonlinear systems, IEEE Transactions on Automatic Control, vol. 47, pp. 576-593, 2000.
[79] Zhang, Y., and Jiang, J., “Integrated active fault-tolerant control using IMM approach, IEEE Transactions on Aerospace Electronic System, vol. 37, pp. 1221-1235, 2001.
[80] Zheng, F., Wang, Q. G., and Lee, T. H., “On the design of multivariable PID controllers via LMI approach, Automatica, vol. 38, pp. 517-526, 2002.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
1. 適用於具有內部連結未知資料取樣大尺度線性延遲的奇異系統且具有閉迴路解耦特性的分散式線性觀測器與軌跡追蹤器設計
2. 非線性時變多輸入多輸出系統對於致動器錯誤其適應性觀測基底追蹤器的數位再設計
3. 適用於一類具有內部連結之未知大尺度資料取樣非線性系統之輸入限制與致動器錯誤的容錯軌跡追蹤器
4. 基於修正型ARMAX模型和OKID以適用於未知非線性奇異系統之低階主動容錯型狀態空間自調式軌跡追蹤器
5. 適用於具有內部狀態延遲連結之廣義未知大尺度資料取樣線性系統且具有閉迴路解耦特性的分散式模型化線性觀測器與輸入飽和軌跡追蹤器
6. 適用於具有內部狀態延遲連結之未知資料取樣大尺度系統且具有閉迴路解藕特性的新式分散式重複學習追蹤器
7. 適用於非線性隨機混合系統的基於NARMAX模型之狀態空間自調式控制
8. 晚清書學技法論
9. 新型觀測器/卡爾曼濾波器/控制器鑑別法與其應用於輸入限制控制及容錯控制
10. 適用於含直接傳輸項並具有飽和限制之未知系統的數位再設計軌跡追蹤器:基於一種適應性權重調整機制
11. 適用於大尺度系統之分散式軌跡追蹤器:反覆學習與數位重新設計方法
12. 一類未知資料取樣非線性時延系統分散式線性觀測器與追蹤器設計
13. 第二型雙極症與第二型雙極症共病酒精依賴在神經心理功能上的差異
14. 利用不同深度圖案化基板及側壁蝕刻方式增加氮化鎵藍光發光二極體光輸出功率之研究
15. 組織氣候、人格特質對組織承諾之影響-人力資源管理機制之中介效果