跳到主要內容

臺灣博碩士論文加值系統

(100.28.0.143) 您好!臺灣時間:2024/07/14 22:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:趙雅雯
研究生(外文):Ya-WenChao
論文名稱:用於空間可調式視訊編碼之改良型再取樣濾波器
論文名稱(外文):Improved Image Resampling Filters for Spatial Scalable Video Coding Standards
指導教授:劉濱達
指導教授(外文):Bin-Da Liu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:58
中文關鍵詞:H.264/SVC空間可調性雙向?波器方向性?波器
外文關鍵詞:H.264/SVCspatial scalabilitybilateral filterdirectional filter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:182
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本?文針對可調性視訊編碼之空間可調性編碼(Spatial Scalable Coding)提出縮小取樣(Down Sampling)與放大取樣(Up Sampling)?波器。改?型之縮小取樣?波器採用雙向?波器特性及適應式?波器長?之方法,?波器可有效地減少邊緣資訊失真,可將影像同質區域平?化並保?非同質區域之細節部份。因此,其可減少基礎層(Base Layer)編碼位元。並且,由於保?邊緣之特性,使基礎層提供增強層(Enhancement Layer)較好的預測,因此亦可?低增強層的編碼位元。在影像中,本文以梯?運算方法,將邊緣與非邊緣作分?。在影像邊緣上缺失之像素,使用方向性內插法。實驗結果顯示,當提出的縮小取樣?波器在基礎層編碼?低約20%的位元?時,增強層可減少1.5%
的編碼位元。所提出的方向性內插方法,可提升PSNR 值約0.01dB~0.26dB,?低位元?約0.2%~16.3%。
This thesis proposes a downsampling filter and an upsampling filter for spatial scalable video coding. The bilateral filter and adaptive filter length concepts are used in downsampling filter to reduce the loss of edge information in images. By smoothing the homogeneous area and preserving the details in the non-homogeneous area of images, the coding bits are reduced in the base layer coding. At the same time, the edge-preserving property in the base layer also provides a better prediction to save the coding bits in the enhancement layer. For upsampling filter, the direction information of an image is used.
The local gradient determines the edges of an image. The missing pixels on the edges are obtained by performing the directional interpolation. Experimental results show that, for proposed downsampling filter, 1.5% bit-rate reduction is achieved in the enhancement layer while decreasing about 20% bit-rates on average in the base layers. For the roposed
directional upsampling filter, the PSNR improvement and bit-rate reduction are 0.01dB~0.26dB and 0.2%~16.3%, respectively.
Abstract ii
Acknowledgement iii
List of Tables vii
List of Figures viii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Organization of the Thesis 2
Chapter 2 Spatial Scalability and Filters 4
2.1 Scalable Video Coding Architecture 4
2.1.1 Concepts of Scalability 6
2.2 Spatial Scalability 9
2.2.1 Interlayer Mechanisms in Spatial Scalability 11
2.2.2 Interlayer Motion Prediction 11
2.2.3 Interlayer Intra Texture Prediction 12
2.2.4 Interlayer Residual Prediction 13
2.3 Resampling Methods for Spatial Scalability 13
2.3.1 Downsampling Filter in the SVC 14
2.3.2 Upsampling Filters in the SVC 15
2.3.2.1 Summary of Upsampling Methods in SVC 19
2.3.3 Related Filter Designs 20
Chapter 3 Proposed Scaling Filters 22
3.1 Bilateral-based Downsampling Filter 22
3.1.1 Edge Detection 28
3.1.2 Bilateral Downsampling 29
3.2 Directional-based Upsampling Filter 32
3.2.1 Edge Detection 33
3.2.2 Directional Decision-making 33
3.2.3 Directional Interpolation 36
3.3 Summary 38
Chapter 4 Simulation Results and Comparisons 39
4.1 Experimental Environment Settings 39
4.2 Bilateral-based Downsampling Filter 40
4.3 Directional-based Upsampling Filter 49
Chapter 5 Conclusions and Future Work 53
5.1 Conclusions 53
5.2 Future Work 54
References 55


[1]ISO/IEC JTC1/SC29/WG11 and ITU T SG16 Q.6, Joint Draft 10 of SVC Amendment, Document JVT-W201, Apr. 2007.

[2]H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the scalable video coding extension of the H.264/AVC standard, IEEE Trans. Circuits Syst. Video Technol., vol.17, pp. 1103-1120, Sept. 2007.

[3]ISO/IEC JTC1/SC29/WG11 and ITU T SG16 Q.6, Joint Draft 11 of SVC Amendment, Document JVT-X201, July 2007.

[4]T. Wiegand, G. J. Sullivan, G. Bj?ntegaard, and A. Luthra, “Overview of the H.264/AVC video coding standard, IEEE Trans. Circuits Syst. Video Technol., vol. 13, pp. 560–576, July 2003.

[5]G. J. Sullivan and T. Wiegand, “Video compression-from concepts to the H.264/AVC standard, Proc. IEEE, vol. 93, pp. 18–31, Jan. 2005.

[6]D. Marpe, T. Wiegand, and G. J. Sullivan, “The H.264/MPEG4 advanced video coding standard and its applications, IEEE Commun. Mag., vol. 44, pp. 134–144, Aug. 2006.

[7]C. A. Segall and G. J. Sullivan, “Spatial scalability within the H.264/AVC scalable video coding extension, IEEE Trans. Circuits Syst. Video Technol., vol. 17, pp. 1121-1135, Sept. 2007.

[8]J. Goutsias and H. J. A. Heijmans, “Nonlinear multiresolution signal decomposition schemes I: Morphological pyramids, IEEE Trans. Image Process., vol. 9, pp. 1862–1876, Nov. 2000.

[9]P. Burt and E. Adelson, “The Laplacian pyramid as a compact image code, IEEE Trans. Commun., vol. 31, pp. 532–540, Apr. 1983.

[10]A. Toet, “Hierarchical image fusion, Mach. Vis. Appl., vol. 3, pp. 1–11, Dec. 1990.

[11]P. Burt, “Smart sensing within a pyramid vision machine, Proc. IEEE, vol. 76, pp. 1006–1015, Aug. 1988.

[12]G. Marquant, E.Francois, N. Burdin, P. Lopez, and J. Vi?ron, “Extended spatial scalability for non dyadic video formats: from SDTV to HDTV, in Proc. Visual Comm. and Image Process., July 2005, pp. 547-558.

[13]ISO/IEC JTC1/SC29/WG11 and ITU T SG16 Q.6, Generic Extended Spatial Scalability, Document JVT-O041, Apr. 2005.

[14]ISO/IEC JTC1/SC29/WG11 and ITU T SG16 Q.6, Extended Spatial Scalability with Picture-Level Adaptation, Document JVT-O008, Apr. 2005.

[15]H.264/SVC JSVM reference software. [Online] Available: http://ftp3.itu.int/av-arch/jvt-site/

[16]ISO/IEC JTC1/SC29/WG11, Verification Model 18.0 of MPEG-4 Visual, Document N3908, Feb. 2001.

[17]T. Wiegand, “Draft ITU-T recommendation and final draft international standard of joint video specification (ITU-T Rec. H.264/ISO/IEC 14496-10 AVC), Mar. 2003.

[18]R. M. Haralick and L. T. Watson, “A facet model for image data, Comput. Graph. Image Process., vol.15, pp. 113-129, Feb. 1981.

[19]M. S. Lee and C. W. Chang, “An efficient upsampling technique for images and videos, in Proc. PCM., Dec. 2009, pp. 77-87.

[20]C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images, in Proc. Int. Conf. Computer Vision, Jan. 1998, pp. 839–846.

[21]F. Durand and J. Dorsey, “Fast bilateral filtering for the display of high-dynamic-range images, ACM Trans. Graph., vol.21, pp. 257–266, Nov. 2002.

[22]G. Bj?ntegaard, “Calculation of average PSNR differences between RD-curves, ITU-T Q.6/16, Document VCEG-M33, Mar. 2001.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top