跳到主要內容

臺灣博碩士論文加值系統

(100.28.0.143) 您好!臺灣時間:2024/07/14 22:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:童子原
研究生(外文):Zi-YuanTong
論文名稱:電動載具用非接觸式感應饋電軌道:高功率交流正弦激勵電源系統之研製
論文名稱(外文):Contactless Inductive Power Transmission Track for Electric Vehicles: Implementation of High Power Exciting System
指導教授:李嘉猷
指導教授(外文):Jia-You Lee
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:68
中文關鍵詞:非接觸式Class E變流器
外文關鍵詞:contactlessClass E
相關次數:
  • 被引用被引用:7
  • 點閱點閱:184
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文旨在研製應用於非接觸式感應饋電軌道之高功率激勵電源系統,其特點係採Class E變流器架構供給交流正弦激勵電源予交錯式編織型陣列區塊感應耦合結構。本系統操作在高壓低電流下以確保電路動作正常,且由降壓變壓器轉換為低壓大電流形式饋入非接觸式感應耦合結構初級側,可使非接觸式感應耦合結構之次級側拾取到較大能量,以達最佳電能傳輸效率,同時此系統輸出電流亦有對負載變化靈敏度相當低之特點,可提升整體系統穩定性,且最高輸出功率約為520W。最後,經模擬及實驗實現高功率交流正弦激勵電源系統應用於電動載具用非接觸式感應饋電軌道。
This thesis investigates the high power exciting system for contactless inductive power transmission track. The feature of the thesis is that supply sinusoidal voltage to the interlaced-winding weaving-type inductive coupling structure by Class-E inverter. The system can operate normally under the high-voltage and low-current condition. However, in order to pick up more energy on the secondary side, the circuit utilizes the step-down transformer to produce low-voltage and high-current to reach the best transmission efficiency. Besides, the system feature is very low load-regulation. Furthermore the highest output power of this system is 520W. Finally, simulation and experiment results show that the system can be applied to contactless inductive transmission track.
中文摘要 I
英文摘要 II
誌謝 III
目錄 IV
圖目錄 VII
表目錄 XI
第一章 緒論 1
1-1 研究動機 1
1-2 研究背景 2
1-3 研究方法 4
1-4 論文大綱 5
第二章 非接觸式饋電軌道系統 6
2-1 前言 6
2-2 常見非接觸式軌道 6
2-3 非接觸式感應耦合結構 8
2-4 整體架構 9
2-5 非接觸式電能傳輸原理 10
2-6 交流正弦激勵電源 12
2-6-1 Class D諧振變流器 12
2-6-2 全橋諧振變流器 12
2-6-3 Class E變流器 13
第三章 系統原理分析與設計 14
3-1 前言 14
3-2 Class E變流器工作原理 14
3-3 系統電路架構分析 16
第四章 硬體電路規劃 28
4-1 前言 28
4-2 硬體電路架構 28
4-3 驅動電路設計 29
4-3-1 Class E變流器設計 29
4-3-2 電路架構III原理分析 29
4-4 降壓變壓器設計 33
4-5 單晶片控制 35
4-6 驅動頻率變換機制 37
4-6-1 降壓電路 37
4-6-2 全波整流電路 38
4-6-3 DAC轉換電路 39
4-6-4 VCO變頻電路 40
4-6-5 光耦合器驅動電路 41
4-7 Relay控制電路 41
4-8 高頻切換式弦波電源系統之設計流程 43
第五章 系統模擬與實驗結果 46
5-1 前言 46
5-2 IsSpice電路模擬 46
5-3 硬體電路製作 49
5-4 實驗結果量測 51
5-4-1 高頻切換式弦波電源系統 51
5-4-2 整體系統量測 59
第六章 結論與未來研究方向 62
6-1 結論 62
6-2 未來研究方向 63
參考文獻 64


[1] B. Choi, J. Nho, H. Cha, T. Ahn, and S. Choi, “Design and implementation of low profile contactless battery charger using planar printed circuit board windings as energy transfer device, IEEE Trans. Ind. Electron., vol. 51, no.1, pp. 140-147, 2004.
[2] Y. Jang and M. M. Jovanovic, “A contactless electrical energy transmission system for portable-telephone battery chargers, IEEE Trans. Ind. Electron., vol. 50, no. 3, pp. 520-527, 2003.
[3] J. Achterberg, E. A. Lomonova, and J. de Boeij, “Coil array structures compared for contactless battery charging platform, IEEE Trans. Magn., vol. 44, no. 5, pp. 617-622, 2008.
[4] K. Hatanaka, F. Sato, H. Matsuki, S. Kikuchi, and J. Kawase, “Power transmission of a desk with a cord-free power supply, IEEE Trans. Magn., vol. 38, no. 5, pp. 3329-3331, 2002.
[5] W. Lim, J. Nho, B. Choi, and T. Ahn, “Low-profile contactless battery charger using planar printed circuit board windings as energy transfer device, in Proc. IEEE PESC’02, 2002, pp. 579-584.
[6] SAE Electric Vehicle Inductive Coupling Recommended Practice, SAE J-1773, Draft Feb. 1995.
[7] J. Hayes, J. Hall, M. Eqan, and J. Murphy, “Full-bride, series -resonant converter supplying the SAE J-1773 electric vehicle inductive charging interface, in Proc. IEEE PESC’96, 1996, vol. 2, pp. 1913-1918.
[8] R. Laouamer, M. Brunello, J. P. Ferrieux, O. Normand, and N. Buchheit, “A multi-resonant converter for non-contact charging with electromagnetic coupling, in Proc. IEEE IECON’97, 1997, vol. 2, pp. 792-797.
[9] K. W. Klontz, D. M. Divan, and D. W. Novothy, “An actively cooled 120-kW coaxial winding transformer for fast charging electric vehicles, in Proc. IEEE IAS’94, 1994, vol. 2, pp. 1049-1054.
[10] J. Lastowiecki and P. Staszewski, “Sliding transformer with long magnetic circuit for contactless electrical energy delivery to mobile receivers, IEEE Trans. Ind. Electron., vol. 53, no. 6, pp. 1943-1948, 2006.
[11] A. Kawamura, G. Kuroda, and C. Zhu, “Experimental results on contact -less power transmission system for the high-speed trains, in Proc. IEEE PESC’07, 2007, pp. 2779-2784.
[12] J. de Boeij, E. Lomonova, and A. Vandenput, “Optimization of contactless planar actuator with manipulator, IEEE Trans. Magn., vol. 44, no. 6, pp. 1118-1121. , 2008.
[13] S. Raabe, G. A. J. Elliott, G. A. Covic, and J. T. Boys, “A quadrature pickup for inductive power transfer systems, in Proc. IEEE ICIEA’07, 2007, pp.68-73.
[14] T. Kojiya, F. Sato, H. Matsuki, and T. Sato, “Automatic power supply system to underwater vehicles utilizing non-contacting technology, in Proc. IEEE OCEANS’04, 2004, vol. 4, pp. 2341-2345.
[15] A. Karalis, J. D. Joannopoulos, and M. Soljacic, “Efficient wireless non-radiative mid-range energy transfer, Ann. Phys., vol. 323, no. 1, pp. 34-48, 2008.
[16] A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, “Wireless energy transfer via strongly coupled magnetic resonances, Science, vol. 317, pp. 83-85, 2007.
[17] Y. Wu, L. Yan, and S. Xu, “Modeling and performance analysis of the new contactless power supply system, in Proc. ICEMS’05, 2005, vol. 3, pp. 1983-1987.
[18] Marin Soljacic, Power transfer through strongly coupled resonances, Massachusetts Institute of Technology, 2007.
[19] C. S. Wang, G. A. Covic, and O. H. Stielau, “Investigating an LCL load resonant inverter for inductive power transfer applications, IEEE Trans. Power Electron., vol. 19, pp.995-1002, 2004.
[20] O. H. Stielau and G. A. Covic, “Design of loosely coupled inductive power transfer systems, in Proc. PowerCon’00? 2000, vol. 1, pp. 85-90.
[21] L. H. Li, P. A. Hu, G. A. Covic, and T. Chunsen, “A new primary power regulation method for contactless power transfer, in Proc. IEEE ICIT’09, 2009, pp. 1-5.
[22] C. S. Wang, G. A. Covic and O. H. Stielau, “Design considerations for a contactless electric vehicle battery charger, IEEE Trans. Ind. Electron., vol. 52, no. 5, pp. 1308-1314, 2005.
[23] J. Sallan, J. L. Villa, A. Llombart and J. F. Sanz, “Optimal design of ICPT systems applied to electric vehicle battery charge, IEEE Trans. Ind. Electron, vol. 56, no. 6, pp. 2140-2149, 2009.
[24] C. S. Wang, O. H. Stielau and G. A. Covic, “Resonant contactless energy transfer with improved ef?ciency, IEEE Trans. Power Electronics, vol. 24, no. 3, pp. 685-699, 2009.
[25] C. H. Lin and J. Y. Chen, “The tracking of the optimal operating frequency in a Class E backlight inverter using the PLL technique, in Proc. IEEE ICIEA’07, 2007, pp. 1933-1938.
[26] G. Kendir, W. Liu, G. Wang, M. Sivaprakasam, R. Bashirullah, M. Humayun, and J. Weiland, “An optimal design methodology for inductive power link with class-E ampli?er, IEEE trans. on circuits and systems, vol. 52, no. 5, pp. 857-866, 2005.
[27] M. K. Kazimierczuk and D. Czarkowski, Resonant Power Converter. 1st ed., Wiley, 1995.
[28] N. Sokal and A. Sokal, “Class E-A new class of high-ef?ciency tuned single-ended switching power ampli?ers, IEEE J. Solid-State Circuits,
vol. 10, no. 3, pp. 168-176, 1975.
[29] 賴弘偉,分區激發感應結構於非接觸式多負載充電平台之研究,國立成功大學電機工程學系碩士論文,2009年。
[30] 陳建任,具多鐵芯感應結構非接觸式油電混合車充電槳之研究,國立成功大學電機工程學系碩士論文,2009年。
[31] 張宇誠,具封閉型耦合結構非接觸式感應供電軌道之研究,國立成功大學電機工程學系碩士論文,2009年。
[32] 陳勝建,非接觸式編織型饋電軌道之研究,國立成功大學電機工程學系碩士論文,2009年。
[33] 蘇哲彬,電動載具用非接觸式感應饋電軌道:交錯式編織型陣列區塊感應耦合系統之研製,國立成功大學電機工程學系碩士論文,2010年。
[34] 張孟詔,電動載具用非接觸式感應饋電軌道:載具側三埠式充電/供電系統,國立成功大學電機工程學系碩士論文,2010年。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊