跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/03/19 20:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃晉益
研究生(外文):Jing-YiHuang
論文名稱:以數位控制實現之AVP模式切換式降壓型直流-直流轉換器
論文名稱(外文):Digitally Controlled Switching-Mode Step-Down DC-DC Converter for Adaptive Voltage Positioning Scheme
指導教授:張簡樂仁
指導教授(外文):Le-Ren Chang-Chien
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:73
中文關鍵詞:數位控制電阻性輸出阻抗
外文關鍵詞:digital controlAVPresistive output impedance
相關次數:
  • 被引用被引用:2
  • 點閱點閱:378
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文以數位控制實現適應性電壓定位(Adaptive Voltage Positioning, AVP)模式之切換式降壓型直流-直流轉換器。AVP控制模式可使切換式降壓型直流-直流轉換器提供最佳化的負載響應,並且使閉迴路系統具有電阻性輸出阻抗之特性。為了使系統具有最佳的負載響應,控制器必須隨著輸出電容之等效串聯電阻作調整。在類比控制架構下,控制器不易即時調整參數,因此無法使系統維持最佳的負載響應。由於數位控制器具有可程式化的特性,可以很容易的調整系統參數,因此本文將以數位控制架構來實現AVP控制器。本文先以小訊號模型闡述AVP之理論基礎,並推導出控制器之設計,接著說明如何以數位控制架構來實現AVP控制器。在電路實現上,本研究以Matlab/Simulink建立完整的數位控制系統模型,並以模擬結果驗證理論。最後以PCB板實現12V轉1.2V的切換式降壓型直流-直流轉換器,並以FPGA實現AVP模式之數位控制器。模擬與實驗結果顯示數位控制AVP具有良好的負載響應特性。
A digitally controlled Buck converter for adaptive voltage positioning (AVP) scheme is proposed in this thesis. With the AVP scheme, resistive output impedance can be realized to provide the optimal load transient response. To achieve the optimal load transient response, the control parameters should be adjusted with respect to the effective series resistance (ESR) of output capacitor. Generally, it is difficult to change the control parameters in the analog controller. Therefore, its optimal load transient response could not be guaranteed. Alternatively, it is easy to change the control parameters in the digital controller due to its programmability. In this work, a digitally controlled AVP scheme is adopted to achieve this goal.
In this thesis, the principle of AVP scheme is explained first based on small-signal model analysis. The general guidelines of compensator design are illustrated. Following that, the guidelines of the digital controller design are also highlighted. A complete system model based on the design guidelines is constructed through Matlab/Simulink in this work. Model simulation shows that the results are correspondent with the theoretical analysis. Finally, a 12V-to-1.2V PCB-layout Buck embedded with the FPGA-realized digital controller is implemented to validate the performance of the AVP scheme.
摘要 I
Abstract II
誌謝 IV
目錄 V
表目錄 VIII
圖目錄 IX
第一章、 緒論 1
1.1 研究背景與動機 1
1.2 本文架構 4
第二章、 切換式降壓型直流-直流電壓調節器介紹 5
2.1 動作原理及輸出特性 5
2.2 輸出濾波器設計 8
2.3 小訊號平均模型 13
2.4 電壓模式控制 16
2.4.1 電路架構 17
2.4.2 迴路分析及補償器設計 19
2.4.3 負載響應及輸出阻抗分析 20
第三章、 AVP模式控制及其數位控制器設計 27
3.1 AVP模式及其電路架構 27
3.2 迴路分析及補償器設計 29
3.3 輸出阻抗分析 33
3.4 以輸出電流代替電感電流之AVP架構 37
3.5 AVP模式之數位控制器設計 40
3.5.1 數位控制架構與量化效應 41
3.5.2 類比-數位轉換器(Analog-to-Digital converter, A/D) 42
3.5.3 數位脈波寬度調變模組(Digital Pulse Width Modulator, DPWM) 43
3.5.4 迴路增益修正 45
3.5.5 數位補償器 46
第四章、 模擬與實驗結果 51
4.1 AVP模式之系統模型與模擬結果 51
4.2 實作電路介紹 57
4.2.1 功率級與閘極驅動器 58
4.2.2 A/D與電流感測器 58
4.2.3 FPGA 59
4.2.4 負載 61
4.3 量測結果 63
第五章、 結論與未來研究方向 67
5.1 結論 67
5.2 未來研究方向 68
參考文獻 69
作者簡介 73
[1]A. V. Peterchev, J. Xiao, and S. R. Sanders, Architecture and IC implementation of a digital VRM controller, IEEE Trans. Power Electron., vol. 18, no 1, pp. 356-364, Jan. 2003.
[2]K. Yao, M. Xu, Y. Meng, and F. C. Lee, Design Considerations for VRM Transient Response Based on the Output Impedance, IEEE Trans. Power Electron., vol. 18, no 6, pp. 1270-1277, Nov. 2003.
[3]K. Yao, Y. Ren, J. Sun, K. Lee, M. Xu, J. Zhou, and F. C. Lee, Adaptive voltage positioning design for voltage regulators, IEEE APEC, pp. 272-278, 2004.
[4]J. Sun, J. Zhou, M. Xu, and F. C. Lee, A novel input-side current sensing method to achieve AVP for future VRs, IEEE Trans. Power Electron., vol. 21, no 5, pp. 1235-1242, Sep. 2006.
[5]L. Corradini, A. Costabeber, P. Mattavelli, and S. Saggini, Time optimal, parameters-insensitive digital controller for VRM applications with Adaptive Voltage Positioning, IEEE COMPEL, pp. 1-8, 2008.
[6]M. Lee, D. Chen, K. Huang, C. W. Liu, and B. Tai, Modeling and design for a novel adaptive voltage positioning (AVP) scheme for multiphase VRMs, IEEE Trans. Power Electron., vol. 23, no 4, pp. 1733-1742, Jul. 2008.
[7]S. Pan and P. K. Jain, A non-linear multi-mode control method to improve the transient performance of voltage regulators, IEEE INTELEC, pp. 1-6, 2008.
[8]P. L. Wong, F. C. Lee, P. Xu, and K. Yao, Critical inductance in voltage regulator modules, IEEE Trans. Power Electron., vol. 17, no 4, pp. 485-492, Jul. 2002.
[9]R. B. Ridley, B. H. Cho, and F. C. Y. Lee, Analysis and interpretation of loop gains of multiloop-controlled switching regulators, IEEE Trans. Power Electron., vol. 3, no 4, pp. 489-498, Oct. 1988.
[10]K. Yao, Y. Ren, and F. C. Lee, Critical bandwidth for the load transient response of voltage regulator modules, IEEE Trans. Power Electron., vol. 19, no 6, pp. 1454-1461, Nov. 2004.
[11]A. V. Peterchev and S. R. Sanders, Quantization resolution and limit cycling in digitally controlled PWM converters, IEEE Trans. Power Electron., vol. 18, no 1, pp. 301-308, Jan. 2003.
[12]H. Peng, A. Prodic, E. Alarcon, and D. Maksimovic, Modeling of quantization effects in digitally controlled dc-dc converters, IEEE Trans. Power Electron., vol. 22, no 1, pp. 208-215, Jan. 2007.
[13]B. J. Patella, A. Prodic, A. Zirger, and D. Maksimovic, High-frequency digital PWM controller IC for DC-DC converters, IEEE Trans. Power Electron., vol. 18, no 1, pp. 438-446, Jan. 2003.
[14]M. Y. K. Chui, W. H. Ki, and C. Y. Tsui, A programmable integrated digital controller for switching converters with dual-band switching and complex pole-zero compensation, IEEE J. Solid-State Circuits, vol. 40, no 3, pp. 772-780, Mar. 2005.
[15]B. Miao, R. Zane, and D. Maksimovic, Automated Digital Controller Design for Switching Converters, IEEE PESC, pp. 2729-2735, 2005.
[16]A. Kelly and K. Rinne, A self-compensating adaptive digital regulator for switching converters based on linear prediction, IEEE APEC, pp. 712-718, 2006.
[17]T. Takayama and D. Maksimovic, Digitally controlled 10 MHz monolithic buck converter, IEEE COMPEL, pp. 154-158, 2006.
[18]V. Yousefzadeh, T. Takayama, and D. Maksimovi, Hybrid DPWM with Digital Delay-Locked Loop, IEEE COMPEL, pp. 142-148, 2006.
[19]H. Al-Atrash and I. Batarseh, Digital Controller Design for a Practicing Power Electronics Engineer, IEEE APEC, pp. 34-41, 2007.
[20]G. Feng, E. Meyer, and Y. F. Liu, A new digital control algorithm to achieve optimal dynamic performance in DC-to-DC converters, IEEE Trans. Power Electron., vol. 22, no 4, pp. 1489-1498, Jul. 2007.
[21]Z. Lukic, N. Rahman, and A. Prodic, Multibit Sigma-Delta PWM digital controller IC for DC-DC converters operating at switching frequencies beyond 10 MHz, IEEE Trans. Power Electron., vol. 22, no 5, pp. 1693-1707, Sep. 2007.
[22]W. Stefanutti, P. Mattavelli, S. Saggini, and M. Ghioni, Autotuning of Digitally Controlled DC-DC Converters Based on Relay Feedback, IEEE Trans. Power Electron., vol. 22, no 1, pp. 199-207, Jan. 2007.
[23]Z. Y. Zhao and A. Prodic, Limit-cycle oscillations based auto-tuning system for digitally controlled DC-DC power supplies, IEEE Trans. Power Electron., vol. 22, no 6, pp. 2211-2222, Nov. 2007.
[24]Y. T. Chang and Y. S. Lai, Digital Controller Design for Buck Converter with the Reduction of Phase Transition and Output Voltage Oscillation under Transient State, IET PEMD, pp. 376-380, 2008.
[25]L. Corradini, P. Mattavelli, W. Stefanutti, and S. Saggini, Simplified model reference-based autotuning for digitally controlled SMPS, IEEE Trans. Power Electron., vol. 23, no 4, pp. 1956-1963, Jul. 2008.
[26]Z. Lukic, Z. Zhao, S. M. Ahsanuzzaman, and A. Prodic, Self-tuning digital current estimator for low-power switching converters IEEE APEC, pp. 529-534, 2008.
[27]Z. Y. Zhao and A. Prodic, Continuous-time digital controller for high-frequency dc-dc converters, IEEE Trans. Power Electron., vol. 23, no 2, pp. 564-573, 2008.
[28]Y.-F. Liu, E. Meyer, and X. Liu, Recent Developments in Digital Control Strategies for DC/DC Switching Power Converters IEEE Trans. Power Electron., vol. 24, no 11, pp. 2567-2577, Nov. 2009.
[29]M. Shirazi, R. Zane, and D. Maksimovic, An Autotuning Digital Controller for DC-DC Power Converters Based on Online Frequency-Response Measurement, IEEE Trans. Power Electron., vol. 24, no 11, pp. 2578-2588, Nov. 2009.
[30]P. Zumel, C. Fernandez, A. Lazaro, and A. Barrado, Digital compensator design for DC-DC converters based on FPGA: an educational approach, IEEE IECON, pp. 5439-5444, 2006.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top