跳到主要內容

臺灣博碩士論文加值系統

(44.192.44.30) 您好!臺灣時間:2024/07/25 09:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭蒨如
研究生(外文):Chien-JuKuo
論文名稱:開裂與界面脫層破壞分析於薄膜及內連線結構之研究與應用
論文名稱(外文):Channel Cracking and Interfacial Delamination Analyses for Thin Film and Interconnect Structures Applications
指導教授:陳國聲
指導教授(外文):Kuo-Shen Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:157
中文關鍵詞:內連線結構薄膜熱應力能量釋放率破壞力學有限元素分析
外文關鍵詞:interconnect structuresthin filmsthermal stressenergy release ratefracture mechanicsfinite element analysis
相關次數:
  • 被引用被引用:3
  • 點閱點閱:500
  • 評分評分:
  • 下載下載:72
  • 收藏至我的研究室書目清單書目收藏:0
微系統元件是由不同材料所組成之複雜結構,由於結構內部不同材料間材料性質的差異,使得薄膜與內連線結構在嚴苛的製程環境下產生高應力,進而造成應力集中、空孔成長與裂紋擴展等問題,導致IC失效。因此,薄膜與內連線結構之可靠度是一重大關鍵,若能預測應力及破壞行為,將提供製程設計相當重要之資訊。本文之研究目標主要希望藉由一有系統之失效分析流程,針對半導體元件中之內連線結構及薄膜兩個主題進行討論,提供有效改善元件可靠度之方法。本論文主要從材料力學及破壞力學的觀點出發,配合有限元素軟體建構結構之虛擬模型以進行相關模擬,分別針對內連線結構及薄膜結構之失效問題進行討論,估計結構內部之應力分布及能量釋放率,探討不同材料參數、製程溫度等因素對內連線及薄膜可靠度之影響性。研究結果顯示,內連線結構之導線角落處會有應力集中問題,容易產生孔洞導致失效,且無論是薄膜或內連線結構,高應力都容易誘使裂紋擴展,因此選擇介電層材料時,在滿足電性與製程要求之前提下,可挑選楊氏模數與熱膨脹係數較低之材料,減少高應力的產生。而製程之溫度亦會影響結構之可靠度,若能控制製程溫度在一定程度之下,亦可有效提高元件之可靠度。對於薄膜結構,膜厚的增加會提高裂紋擴展之能量,若薄膜本身含有殘留應力,更會大幅降低結構之可靠度,因此若能控制製程避免殘留應力產生或降低膜厚,皆可減少失效發生之機會。希望藉由本文提出之分析流程,提供學者研究破壞問題之邏輯思考與分析方法,並提供開發者設計方針,縮短開發時間。
Microsystem devices are composed of multi-layered thin films with different material properties and structural thickness, and are connected with each other via metallic interconnect structures. However, during fabrication, the therm-mechanical mismatch between materials generates high stresses, which cause the generation of stress-induced voiding, cracks, as well as the possible channel cracks and interface delaminations. These defects strongly affect the reliability of integrated circuit devices. As a result, the reliability of thin films and interconnect structures becomes one major concern of modern microelectronics. The aim of this study is to address the reliability of interconnect structures and thin films through a systematic failure analysis, and to provide effective methods to improve the reliability of IC and MEMS devices. This theses utilizes mechanics of materials, fracture mechanics, and finite element method to analysis channel cracking and interfacial delamination of thin films and interconnect structures, as well as for estimating that the stress and energy release rate within the structures. Parametric studies for investigating the sensitivity of each physical parameter on the stress generation, strain energy release rate, and crack growth are presented. The results show that high stress could generate stress-induced voiding and cracking, and select the low-k materials that lower Young's modulus and coefficient of thermal expansion could avoid cause high stress. Lower processing temperature could improve the reliability of interconnect structures, and a smaller residual stress could avoid interfacial delamination of thin films. Using this systematic failure analysis method, it is possible to provide an efficient method to analysis fracture problems, and the study results should be useful for providing engineers the the conceptual design structure reliability access of thin film and interconnect structures, and to reduce development time.
摘要 I
Abstract II
致謝 III
目錄 V
表目錄 IX
圖目錄 X
符號說明 XIX

第一章 緒論
1.1 前言 1
1.2 文獻回顧 5
1.3 研究動機與目的 9
1.4 全文架構 11
第二章 半導體製程相關背景介紹
2.1 本章介紹 13
2.2 半導體製程 14
2.3 薄膜製程技術與薄膜破壞 16
2.4 內連線製程 20
2.5 低介電常數材料 22
2.6 內連線結構問題 25
2.7 小結 26
2.8 本章結論 26
第三章 結構破壞力學理論與有限元素失效分析
3.1 本章介紹 27
3.2 應力分析 29
3.3 破壞力學 31
3.4 雙材料界面破壞力學 34
3.5 有限元素失效分析 36
3.5.1 有限元素法 36
3.5.2 有限元素軟體ABAQUS 37
3.5.3 有限元素之應力分析 38
3.5.4 有限元素之破壞分析 39
3.6 本章結論 44
第四章 內連線結構之應力與破壞分析
4.1 本章介紹 45
4.2 有限元素模型之建立 46
4.2.1 內連線結構其有限元素受熱模型之建立 46
4.2.2 內連線結構其有限元素破壞模型之建立 49
4.3 有限元素模型之收斂性探討 53
4.4 內連線結構之應力分析 61
4.4.1 介電層材料性質對應力之影響性分析 61
4.4.2 孔洞缺陷對應力之影響性分析 65
4.5 內連線結構之破壞分析 68
4.5.1 介電層材料對界面脫層之影響性分析 68
4.5.2 製程溫度及初始裂紋長度對裂紋之影響性分析 74
4.6 本章結論 78
第五章 雙材料薄膜開裂之理論驗證與三層薄膜結構之開裂分析
5.1 本章介紹 79
5.2 薄膜破壞之力學理論 81
5.3 雙材料薄膜開裂之模型建立與理論驗證 84
5.4 雙材料薄膜開裂延伸至三層結構之薄膜開裂分析 90
5.5 常見的薄膜結構之薄膜開裂分析 101
5.6 本章結論 114
第六章 研究結果與討論
6.1 本章介紹 115
6.2 內連線結構應力討論 116
6.3 內連線結構破壞討論 117
6.4 薄膜破壞討論 122
6.5 綜合討論 124
6.6 本章結論 125
第七章 結論與未來展望
7.1 全文歸納 127
7.2 本文結論 128
7.3 本文貢獻 130
7.4 未來展望 131
參考文獻 137
附錄A 裂紋開口形狀對能量釋放率之有限元素分析其收斂性之影響 145


[1]趙中興, VLSI設計與製造入門. 台北市: 全華科技圖書股份有限公司, 2003.
[2]IBM,http://www.ibm.com/us/en/.
[3]Institute for Microelectronics, Technische Universit?t Wien, http://www.iue.tuwien.ac.at/.
[4]Chipworks, http://www.chipworks.com/default.aspx.
[5]T. S. Park, M. Dao, S. Suresh, A. J. Rosakis, D. Pantuso and S. Shankar, Some practical issues of curvature and thermal stress in realistic multilevel metal interconnect structures, Journal of Electronic Materials, vol. 37, pp. 777-791, 2008.
[6]C. Ryu, K. Kwon, A. Loke, H. Lee, T. Nogami, V. Dubin, R. Kavari, G. Ray and S. Wong, Microstructure and reliability of copper interconnects IEEE Transactions on Electron Devices, vol. 46, pp. 1113-1120, 1999.
[7]C. C. Chiu, C. C. Lee, T. L. Chou, C. C. Hsia and K. N. Chiang, Analysis of Cu/low-k structure under back end of line process, Microelectronic Engineering, vol. 85, pp. 2150-2154, 2008.
[8]A. A. Volinsky, J. B. Vella and W. W. Gerberich, Fracture toughness, adhesion and mechanical properties of low-k dielectric thin films measured by nanoindentation, Thin Solid Films, vol. 429, pp. 201-210, 2003.
[9]T. Ye, Z. Suo and A. G. Evans, Thin film cracking and the roles of substrate and interface, International Journal of Solids and Structures, vol. 29, pp. 2639-2648, 1992.
[10]J. L. Beuth and N. W. Klingbeil, Cracking of thin films bonded to elastic-plastic substrates, Journal of the Mechanics and Physics of Solids, vol. 44, pp. 1411-1428, 1996.
[11]R. H. Dauskardt, Q. M. M. Lane and N. Krishna, Adhesion and debonding of multi-layer thin film structures, Engineering Fracture Mechanics, vol. 61, pp. 141-162, 1998.
[12]J. J. Vlassak, Channel cracking in thin films on substrates of finite thickness, International Journal of Fracture, vol. 119, pp. 229-323, 2003.
[13]T. Y. Tsui, A. J. McKerrow and J. J. Vlassak, Constraint effects on thin film channel cracking behavior, Journal of Materials Research, vol. 20, pp. 2266-2273, 2005.
[14]P. A. Flinn, A. S. Mack, P. R. Bresser and T. N. Marieb, Stress-induced void formation in metal lines, MRS Bulletin, vol. 18, pp. 26-35, 1993.
[15]K. C. Chang, Y. Li, C. Y. Lin and M. J. Lii, Design guidance for the mechanical reliability of low-k flip chip BGA package, in International Microelectronics and Packaging Society Conference, Kaohsiung, Taiwan, October, 2004.
[16]C. C. Lee, T. L. Chou, C. C. Chiu, C. C. Hsia and K. N. Chiang, Cracking energy estimation of ultra low-k package using novel prediction approach combined with global–local modeling technique, Microelectronic Engineering, vol. 85, pp. 2709-2084, 2008.
[17]陳延彰, 半導體內連線結構幾何模型建立、應力分析與可靠度評估, 國立成功大學機械工程學系碩士論文, 2008.
[18]H. Mei, Y. Pang and R. Huang, Influence of interfacial delamination on channel cracking of brittle thin films, International Journal of Fracture, vol. 148, pp. 331-342, 2007.
[19]K. S. Chen, J. Y. Chen and S. Y. Lin, Fracture analysis of thick plasma-enhanced chemical vapor deposited oxide films for improving the structural integrity of power MEMS, Journal of Micromechanics and Microengineering, vol. 12, pp. 714-722, 2002.
[20]J. W. Hutchinson and Z. Suo, Mixed mode cracking in layered materials, Applied Mechanics, vol. 49, pp. 64-187, 1992.
[21]The International Technology Roadmap for Semiconductor (2004), http://www.itrs.net/.
[22]P. J. Wolf. Overview of dual damascene Cu/low-k interconnect , International Sematech (2003.08.14), http://www.nsfstc.unc.edu/.
[23]劉啟人, 銅合金薄膜作為積體電路內連線系統材料之應用與分析, 國立成功大學材料科學及工程學系博士論文, 2005.
[24]張勁燕, 深次微米矽製程技術. 台北市: 五南圖書, 2002.
[25]J. H. Zhao, W. J. Qi and P. S. Ho, Thermomechanical property of diffusion barrier layer and its effect on the stress characteristics of copper submicron interconnect structures, Microelectronics Reliability, vol. 42, pp. 27-34, 2002.
[26]楊正杰、張鼎張、鄭晃忠, 銅金屬與低介電常數材料與製程, 毫微米通訊,第七卷第四期, pp. 40-46, 2000.
[27]Y. L. Shen, Modeling of thermal stresses in metal interconnects effects of line aspect ratio, ournal of Applied Physics, vol. 82, pp. 5525-5530, 1997.
[28]E. T. Ogawa, K. D. Lee and V. Blaschke, Electromigration reliability Issues in dual-damascene Cu interconnections, IEEE Transactions on Reliability, vol. 51, pp. 403-419, 2002.
[29]J. M. Paik, H. Park and Y. C. Joo, Effect of low-k dielectric on stress and stress-induced damage in Cu interconnects, Microelectronic Engineering, vol. 71, pp. 348-357, 2004.
[30]C. C. Lee, C. C. Chiu and K. N. Chiang, Stability of J-integral calculation in the crack growth of copper/low-k stacked structures, in 10th Intersociety Conference on Thermal and Thermomechanical phenomena in Electronic Systems, San Diego, CA, USA, pp. 885-891, May, 2006.
[31]H. Tresca, Memoir on the flow of solid bodies under strong pressure, Comptes-rendus de l'acad?mie des sciences, vol. 59, pp. 754-758, 1864.
[32]R. von-Mises, Mechanik der festen korper im plastisch deformablen zustand, Nachrichten von der Gesellschaft der Wissenschaften zu G?ttingen, Mathematisch-Physikalische Klasse, vol. 1, pp. 582-592, 1913.
[33]陳文華、張士欽, 基本工程破裂力學. 台北市: 國立編譯館, 1995.
[34]A. A. Griffith, The phenomena of rupture and flow in solids, Philosophical Transactions of the Royal Society of London, Sereis A, vol. 221, pp. 163-198, 1921.
[35]G. R. Irwin, Analysis of stress and strain near the end of crack traversing a plate, Journal of Applied Mechanics, vol. 24, pp. 361-364, 1957.
[36]G. R. Irwin, Fracture, encyclopaedic of physicics. Berlin: Springer- Verlag, 1958.
[37]E. E. Gdoutos, Fracture mechanics:an introduction: Kluwer Academic Publishers, 2005.
[38]J. R. Rice, A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notched and Cracks, Journal of Applied Mechanics, vol. 35, pp. 379-386, 1968.
[39]J. J. Wang, I. G. Wright, K. C. Liu, M. Lance, S. Sengupta and R. L. Xu, An innovative technique for thin film interface toughness research, ORNL/TM-2004/221/R1, 2004.
[40]J. Dundurs, Edge bonded dissimilar orthogonal elastic wedges, Journal of Applied Mechanics, vol. 36, pp. 650-652, 1969.
[41]S. Moaveni, Finite element analysis: theory and application with ANSYS. Upper Saddle River, N.J.: Prentice-Hall, 1999.
[42]XYZ Scientific Applications, Inc., http://www.truegrid.com/femgallery.html.
[43]Microport, Genius Device Simulator, http://www.microport.com.tw/.
[44]E. F. Rybicki and M. F. Kanninen, A finite element calculation of stress intensity factors by a modified crack closure integral Engineering Fracture Mechanics, vol. 9, pp. 931-938, 1977.
[45]許鶴威, 覆晶構裝應力奇異性與破壞分析, 國立成功大學機械工程學系碩士論文, 2004.
[46]X. Chen, Y. C. Lina, X. Liu and G.-Q. Lub, Fracture mechanics analysis of the effect of substrate flexibility on solder joint reliability, Engineering Fracture Mechanics, vol. 72, pp. 2628-2646, 2005.
[47]A. Leski, Implementation of the virtual crack closure technique in engineering FE calculations, Finite Elements in Analysis and Design, vol. 43, pp. 261-268, 2007.
[48]R. M. Marat-Mendesa and M. M. Freitas, Failure criteria for mixed mode delamination in glass fibre epoxy composites, Composite Structures, vol. 92, pp. 2292-2298, 2010.
[49]T. Belytschko, N. Mo?s and J. Dolbow, A finite rlement method for crack growth without remeshing, INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, vol. 46, pp. 131-150, 1999.
[50]士盟科技股份有限公司, http://www.simutech.com.tw/.
[51]RENESAS, http://am.renesas.com/.
[52]EDFAS,2002 photo connect, http://asmcommunity.asminternational.org/.
[53]莊達人, VLSI製造技術. 台北縣: 高立圖書有限公司, 2002.
[54]K. K. Lee, J. He, A. Singh and B. Kim, Benzocyclobutene (BCB) based intracortical neural implant, in 2003 International Conference on MEMS, NANO and Smart Systems (ICMENS'03), Banff, Alberta, Canada, pp. 4118-422, July, 2003.
[55]M. Kohno, Low dielectric constant materials, Journal of Photopolymer Science and Technology, vol. 12, pp. 189-192, 1999.
[56]K. A. Lohner, Microfabricated Refractory Ceramic Structures for Micro Turbomachinery, S.M. Thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology Cambridge, MA., 1999.
[57]A. G. Evans, M. D. Drory and M. S. Hu, The cracking and decohesion of thin films, Journal Material Research, vol. 3, pp. 1043-1049, 1988.
[58]J. L. Beuth, Cracking of thin bonded films in residual tension, International Journal of Solids and Structures, vol. 29, pp. 1657-1675, 1992.
[59]A. R. Zak and M. L. Williams, Crack point dtress dingularities at a bi-material interface, Journal of Applied Mechanics, vol. 30, pp. 142-143, 1963.
[60]A. J. Mueller and R. D. White. Residual Stress Variation in Polysilicon Thin Films, http://engineering.tufts.edu/GradResearch/documents/GradResearch2006/muellerPresentations.pdf.
[61]W. Shi, H. Zhang, G. Zhanga and Z. Li, Modifying residual stress and stress gradient in LPCVD Si3N4 film with ion implantation, Sensors and Actuators A: Physical, vol. 130-131, pp. 352-357, 2006.
[62]羅吉宗, 薄膜科技與應用. 臺北市: 全華科技, 2004.
[63]崇越科技,http://www.topco-global.com/page/customer_product_047.asp.
[64]竹科半導體材料有限公司,http://www.semiwafer.com/products/soi.htm.
[65]http://design.caltech.edu/Research/MEMS/siliconprop.html.
[66]吳秉欣, 磁控濺鍍氮氧化矽與電漿輔助化學氣相沈積氮化矽薄膜材料機械性質檢測和力學分析及其在微系統之應用, 國立成功大學機械工程學系碩士論文, 2010.
[67]J. Y. Lai, Mechanics, mechanisms, and modeling of the chemical mechanical polishing process, Ph.D. dissertation, Dept. Mech. Eng., MIT, USA, 2001.
[68]T. W. Clyne and P. J. Withers, An introduction to metal matrix composites. New York,: Cambridge Unicersity Press, 1993.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊