跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/03/17 13:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳秉昌
研究生(外文):Ping-ChangChen
論文名稱:氣壓隔振平台分析與控制之研究
論文名稱(外文):Analysis and Control of Pneumatic Vibration Isolators
指導教授:施明璋
指導教授(外文):Ming-Chang Shih
學位類別:博士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:108
中文關鍵詞:氣壓伺服控制主動式隔振平台強健控制
外文關鍵詞:pneumatic servo controlactivevibration isolatorrobust control
相關次數:
  • 被引用被引用:1
  • 點閱點閱:289
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
支撐被動式隔振平台主要有三種型式,包括橡膠式、彈簧式與氣壓式。氣壓隔振平台具有多項優點,相較於橡膠式平台具有低共振頻率的特性,又無彈簧式平台因機構造成的摩擦力作用與噪音,對於高頻振動干擾的消除具有相當良好的效果。本文設計製作一雙氣室型被動式隔振平台,並詳細推導及分析其數學模式,針對不同橡膠隔膜之硬度與阻尼孔面積,於實驗與模擬中,討論並分析不同參數下隔振性能的變化。被動式氣壓隔振雖已具有相當之優點,但其低頻的隔振性能不佳,無法滿足廣泛頻率範圍之隔振目的,本文提出氣室直結型主動式隔振平台,利用氣壓伺服閥直接連結於被動式平台之上氣室,接著設計強健控制器使用速度回授的方法,消除被動式平台之共振峰值並有效提升低頻之隔振能力。氣室直結型主動式隔振平台具有構造簡單的優點,但其在隔振性能上仍有改善的空間,故本文再提出氣缸致動型主動式隔振平台,經由承載質量與地面之速度回授,所設計之強健控制器可控制伺服閥使致動器輸出致動力,有效減低振動干擾的影響;為了降低成本,本文亦設計一干擾估測器以估測地面速度取代加速規的直接量測。對於隔振平台受到力量干擾之問題,亦提出有效的控制架構減少平台之振動。模擬與實驗結果顯示,本文所提出之兩種主動式氣壓隔振方法,對於提升隔振性能皆具相當之可行性。
Three types of isolators are widely utilized to support the isolation systems, including elastomeric, spring, and pneumatic isolators. Comparing with elastomeric and spring isolators, pneumatic isolator has various advantages, including features of low frequency resonance, noiseless and frictionless characteristics, and excellent isolation efficiency in high frequency range. A dual-chambers isolator is designed in the dissertation, and its mathematical model is also derived and analyzed in detail. The experiments and simulations are employed to discuss isolation performance under changes of different parameters, including the hardness of rubber diaphragm and area of damping orifice. Due to poor isolation efficiency in low frequency range, passive pneumatic isolator can not perform well at all frequency. Therefore, the direct chamber-attachment type active vibration isolator (AVI) is proposed in the dissertation. The pneumatic servovalve is attached to the top chamber of this type AVI, and the robust controller is designed to attenuate the vibration of the payload and resonance peak with velocity feedback. Although the direct chamber-attachment type AVI can enhance disadvantages of passive isolator, its performance can be improved better. Hence, another type AVI is proposed, and it is named cylinder-actuated type AVI. The designed robust controller can command the pneumatic actuator to output actuating force to suppress vibration of payload with velocity feedback from payload and ground. Under consideration of cost, the proportional integral observer (PI observer) is adopted to estimate vibration disturbance instead of measurement of expensive accelerometer. In addition, the feasible control structure is also proposed when force disturbance exists. The experimental results demonstrate that the proposed two types of AVI both have the ability to enhance isolation performance.
中文摘要 I
英文摘要 III
致謝 V
目錄 VII
表目錄 X
圖目錄 XI
符號說明 XVI
第一章 緒論 1
1-1 背景 1
1-2 研究動機 4
1-3 文獻回顧 5
1-4 研究目的與方法 8
1-5 論文架構 8
第二章 被動式氣壓隔振平台分析與實驗 10
2-1 被動式氣壓式隔振平台之結構 10
2-1-1 單氣室型 10
2-1-2 雙氣室型 11
2-2 數學模式 12
2-2-1 基本假設 12
2-2-2 單氣室型 13
2-2-3 雙氣室型 15
2-3 實驗裝置 23
2-3-1 液壓激振器 24
2-3-2 被動式氣壓隔振實驗台 26
2-4 參數之探討 28
2-4-1 不同硬度的橡膠隔膜之測試 28
2-4-2 不同節流閥開度之測試 .36
2-5 被動式隔振平台之設計要點 39
2-6 總結 43
第三章 氣室直結型主動式隔振平台分析與實驗 45
3-1 氣室直結型主動隔振平台之設計 45
3-2 氣室直結型主動式隔振平台數學模式分析 47
3-3 H∞控制器設計 51
3-4 氣室直結型主動式隔振測試台 56
3-5 實驗結果 57
3-6 總結 60
第四章 氣缸致動型主動式隔振平台分析與實驗 62
4-1 氣缸致動型主動隔振平台之設計 63
4-2 氣缸致動型主動式隔振平台數學模式分析 64
4-3 氣缸致動型主動式隔振平台於地面振動干擾下之控制 73
4-3-1 H∞控制器設計與PI干擾估測器之應用 73
4-3-2 LQR控制器設計 79
4-3-3 氣缸致動型主動式隔振測試台. 82
4-3-4 模擬與實驗結果 83
4-4 氣缸致動型主動式隔振平台於力量干擾下之控制 89
4-4-1 使用壓力差回授之氣壓致動器控制 89
4-4-2 控制器設計 91
4-4-3 模擬移動負載測試台 93
4-4-4 實驗結果 94
4-5 總結 97
第五章 結論與建議 98
參考文獻 102
自述 107

[1]C. G. Lai, A. Callerio, E. Faccioli, V. Morelli, and P. Romani, “Prediction of railway-induced ground vibrations in tunnels, Journal of Vibration and Acoustics, Vol. 127, No.5, pp. 503-514, 2005.

[2]S. H. Ju and H. T. Lin, “Analysis of train-induced vibration and vibration reduction schemes above and below critical Rayleigh speeds by finite element method, Soil Dynamics and Earthquake Engineering, Vol. 24, No. 12, pp. 993-1002, 2004.

[3]L. Schillemans, “Impact of sound and vibration of the North-South high-speed railway connection through the city of Antwerp Belgium, Journal of Sound and Vibration, Vol. 267, No. 3, pp.637-649, 2003.

[4]C. Madshus, B. Bessason, and L. Harvik, “Prediction model for low frequency vibration from high speed railways on soft ground, Journal of Sound and Vibration, Vol. 193, No. 1, pp. 195-203, 1996.

[5]E. E. Ungar, J. A. Zapfe, and J. D. Kemp, “Predicting footfall-induced vibration of floor, Sound and Vibration, Vol. 38, No. 11, pp. 16-22, 2004.

[6]C. G. Gordon, “Generic vibration criteria for vibration-sensitive equipment, Proceedings of SPIE - The International Society for Optical Engineering, Vol. 3786, pp. 22-33, 1999.

[7]FABREEKA Inc., http://www.fabreeka.com/ .

[8]C. M. Harris, Shock & vibration handbook, McGraw-Hill, 1987.

[9]M. J. Nunney, Light and heavy vehicle technology, Butterworth- Heinemann, 1998.

[10]D. B. DeBra, “Vibration isolation of precision machine tools and instruments, Annals of the CIRP, Vol. 42, No. 2, pp. 711-718, 1992.

[11]C. Erin, B. Wilson, and J. Zapfe, “An improved model of a pneumatic vibration isolator: theory and experiment, Journal of Sound and Vibration, Vol.218, No. 1, pp. 81-101, 1998.

[12]G. Quaglia and M. Sorli, “Air suspension dimensionless analysis and design procedure, Vehicle System Dynamics, Vol. 35, No. 6, pp. 443-475, 2001.

[13]K. Mizutani, Y. Fujita, and H. Ohmori, “Hybrid control system for microvibration isolation, International Workshop on Advanced Motion Control, AMC, Vol. 2, pp.577-582, 1996.

[14]A. El-Sinawi, and R. Kashani, “Active isolation using a Kalman estimator-based controller, Journal of Vibration and Control, Vol. 7 No. 8, pp. 1163-1173, 2001.

[15]M. R. Bai and W. Liu, “Control design of active vibration isolation using μ-synthesis, Journal of Sound and Vibration, Vol. 257, No. 1, 157-175, 2002.

[16]Y. Pasco and A. Berry, “Consideration of piezoceramic actuator nonlinearity in the active isolation of deterministic vibration, Journal of Sound and Vibration, Vol. 289, No. 3, pp. 481-508, 2006.

[17]K. G. Ahn, H. J. Pahk, M.Y. Jung and D. W. Cho, “A hybrid-type active vibration isolation system using neural networks, Journal of Sound and Vibration, Vol. 192, No.4, pp. 793-805, 1996.

[18]Y. Nakamura, M. Nakayama, K. Masuda, K. Tanaka, M. Yasuda and T. Fujita, “Development of active six-degrees-of-freedom microvibration control system using giant magnetostrictive actuators, Smart Materials and Structures, Vol. 9, No. 2, pp. 175-185, 2000.

[19]H. Toshioka, Y. Takahashi, K. Katayama, and N. Murai, “An active microvibration isolation system for hi-tech manufacturing facilities, Journal of Vibration and Acoustics-Transactions of The ASME, Vol. 123 No. 2, pp. 269-275, 2001.

[20]A. Huba, “Control problem in a mechantronic vibration isolator, Periodica Polytechnica, Mechanical Engineering, Vol. 45, No. 1, pp. 31-40, 2001.

[21]Y. D. Chen, C. C. Fuh, and P. C. Tung, “Application of voice coil motors in active dynamic vibration absorbers, IEEE Transactions on Magnetics, Vol. 41, No. 3, pp. 1149-1154, 2005.

[22]Y. H. Liu, “Application of a proportional feedback controller for active control of a vibration isolator, Low Frequency Noise, Vibration and Active Control, Vol. 24, No. 3, pp. 181-190, 2005.

[23]A. M. Abakumov and G. N. Miatov, “Control algorithms for active vibration isolation systems subject to random disturbances, Journal of Sound and Vibration, Vol. 289, No. 4-5, pp. 889-907, 2006.

[24]K. T. Chen, C. H. Chou, S. H. Chang and Y. H. Liu, “Intelligent active vibration control in an isolation platform, Applied Acoustics, Vol.69, No. 11, pp. 1063-1084, 2008.

[25]黃仁祥, “主動式氣壓減振平台之研究, 國立成功大學機械工程研究所碩士論文, 2000

[26]T. Kato, K. Kawashima, K. Sawamoto, and T. Kagawa, “Active control of a pneumatic isolation table using model following control and a pressure differentiator, Precision Engineering, Vol. 31, No. 3, pp. 269-275, 2007.

[27]T. Kato, K. Kawashima, T. Funaki, and T. Kagawa, “Active control of a vibration isolation table supported by multiple air springs using quick flow sensors, The 9th International Symposium on Fluid Control, Measurement and Visualization, FLUCOME 2007, Tallahassee, Florida, USA, Sep. 16-19, 2007.

[28]S. Maekawa, M. Wada, Y. Tagawa, S. Imaoka, and M. Hayatsu, “Control of active microvibration isolation equipment by consideration of the air pressure characteristics in a tube, Journal of System Design and Dynamics, Vol. 1, No. 2, pp. 129-137, 2007.

[29]M. C. Shih and T. Y. Wang, “Active control of electro-rheological fluid embedded pneumatic vibration isolator, Integrated Computer-Aided Engineering, Vol. 15, No. 3, pp. 267-276, 2008.

[30]ContiTech AG, http://www.contitech.de/index_en.html

[31]Bilz Vibration Technology AG, http://www.bilz-schwingungstechnik.biz /bilz1/index.php .

[32]J. F. Blackburn, G. Reethof, and J. L. Shearer, Fluid Power Control, Cambridge, MA: MIT Press, 1960.

[33]PISCO Inc., http://www.pisco.co.jp/ .

[34]E. C. Fitch, I. T. Hong, Hydraulic Component Design and Selection, Book 1 of the Computerized Fluid Power Design Series, BarDyne, Inc., 1997.

[35]E. Richer and Y. Hurmuzlu, “A high performance pneumatic force actuator system: part I--Nonlinear mathematical model, Journal of Dynamic Systems, Measurement, and Control, Transactions of the ASME, Vol. 122, No. 3, pp. 416-425, 2000.

[36]K. G. McConnell, Vibration testing: theory & practice, John Wiley & Sons, 1995.

[37]H. E. Merritt, Hydraulic Control System, John Wiley & Sons, 1967.

[38]Vickers Inc., Operating instructions of K(B)SDG4V-3-1* series proportional directional valves, Vickers Inc., 1998.

[39]D. J. Ewins, Modal Testing: Theory and Practice, John Wiley & Sons, New York, 1995.

[40]W. Heylen, S. Lammens, and P. Sas, Modal analysis theory and testing, Katholieke Universiteit Leuven, 1998.

[41]FESTO Inc., Operating instructions of MPYE-type servovalve, FESTO Inc., 2004.

[42]K. Zhou, Essentials of Robust Control, Prentice-Hall, Upper Saddle River, NJ, 1998.

[43]S. C. Fok and E. K. Ong, “Position control and repeatability of a pneumatic rodless cylinder system for continuous positioning, Robotics and Computer Integrated Manufacturing, Vol. 15, No. 5, pp. 365-371, 1999.

[44] M. H. Chiang, C. C. Chen, and T. N. Tsou, “Large stroke and high precision pneumatic–piezoelectric hybrid positioning control using adaptive discrete variable structure control, Mechatronics, Vol. 15, No. 5, pp. 523-545, 2005.

[45]D. G. Luenberger, An Introduction to Observers, John Wiley & Sons, 1979.

[46]S. Beale and B. Shafai, “Robust control system design with a proportional integral observer, International Journal of Control, Vol. 50, No. 1, pp. 97-111, 1989.

[47]D. Soffker, T.J. Yu, and P. C. Muller, “State estimation of dynamical systems with nonlinearities by using proportional-Integral observer, International Journal of Systems Science, Vol. 26, No. 9, pp. 1571-1582, 1995.

[48]M. C. Tsai, E. C. Tseng, and M. Y. Cheng, “Design of a torque observer for detecting abnormal load, Control Engineering Practice, Vol. 8, No. 3, pp. 259-269, 2000.

[49]F. L. Lewis and V. L. Syrmos, Optimal Control, John Wiley & Sons, New York, 1995.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top