跳到主要內容

臺灣博碩士論文加值系統

(34.204.198.73) 您好!臺灣時間:2024/07/21 15:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張文銜
研究生(外文):Wen-HsienChang
論文名稱:建立超音波量測系統評估骨質密度
論文名稱(外文):Implementation of an Ultrasound Measurement System for Assessment of Bone Density
指導教授:陳天送陳天送引用關係
指導教授(外文):Tainsong Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:醫學工程研究所碩博士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:71
中文關鍵詞:功率因素校正保護器波速波衰減
外文關鍵詞:PFCprotectorSOSBUA
相關次數:
  • 被引用被引用:0
  • 點閱點閱:207
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
現今超音波量測在醫學應用上已相當廣泛,除了其具有非侵入式的優點,更重要的是它不會產生輻射危險,且成本較低。而骨質疏鬆症及其併發症會嚴重的影響病患生活品質及浪費龐大的社會醫療資源,故近來也有相當多的研究投入在超音波骨質密度評估,所以本研究將建立一套自製可以使用穿透式以及反射式的超音波發射接收系統應用在骨質密度的評估。
本量測系統的設計以具功率因素校正(PFC)功能之高壓電源供應器提供超音波發射器驅動超音波探頭高穿透力的可調式穩定高壓,並且在接收器使用高增益、高頻寬之放大器接收超音波探頭微弱訊號。透過超音波接收器的前端保護設計,本研究設計的電路可以直接接收驅動超音波探頭的高壓脈衝後的微弱訊號,並且將其放大。而系統核心使用了FPGA簡化電路設計並且控制系統周邊電路的時脈。本量測系統除了可以類比輸出外,在電腦端則以LabVIEW設計了人機介面,可以即時的接收超音波訊號。
目前已完成超音波穿透式以及超音波反射式兩種量測模式的建立,並且利用此系統可以量測假體的寬度、波速(SOS)以及波衰減(BUA)等超音波參數,在壓克力假體的測試中量測值與實際值只有微小的誤差,證明本系統在未來量測應用上的可行性。

Ultrasound measurement technique has been widely used in medicine because of non-radiation; most importantly, it`s non-invasion, safe, and inexpensive. Osteoporosis and its complications seriously affect patients’ quality of life and cause a huge waste of social health care resources. For reasons outlined above, there has been considerable research into the ultrasound assessment of bone density in recent years. The objective of this study is to develop an ultrasound pulser-receiver system with transmission mode and reflection mode used on bone density estimation.
The measurement system includes a high-voltage power supply with PFC function which provides adjustable stable high-voltage and high- penetration to pulse generator drive ultrasound probe. The receiver can receive slightly signal from ultrasound probe by using high gain, high bandwidth operational amplifier. Through the design of protector, receiver is able to connect directly to the output of pulse generator and receive echo signal after the high-voltage pulse. The system core uses FPGA technique to miniaturize electronic systems and control the clock of peripheral circuit. This system provides analog output, and on the computer side, a human-computer interface is designed by using LabVIEW to receive ultrasound signal in time.
The transmission mode and reflection mode of this instrument have been accomplished. This system can measure the parameters such as thickness of phantom, SOS and BUA. In phantom validation studies, the error is less than 3.15%. The results prove the feasibility of this system.

摘要 I
Abstract II
致謝 III
目錄 IV
表目錄 VI
圖目錄 VII
第一章 緒論 1
1.1 研究背景 1
1.1.1 骨骼的解剖生理 1
1.1.2 骨質疏鬆症 2
1.1.3 臨床常見骨密度檢測儀器 3
1.2 研究動機與目的 5
1.3 文獻回顧 6
1.4 論文架構 9
第二章 研究原理 10
2.1 聲波傳遞特性 10
2.2超音波量化參數 10
2.2.1 穿透式量測模式 11
2.2.2 反射式量測模式 14
2.3 超音波前端電路設計原理 17
2.3.1超音波發射器 17
2.3.2 超音波接收器 19
2.4通用序列匯流排(Universal Serial Bus, USB) 19
2.4.1 USB通訊協定 20
2.5 FPGA (Field Programmable Gate Array) 21
第三章 材料與方法 23
3.1 超音波發射器(Pulser) 24
3.2超音波接收器(Receiver) 26
3.3 超音波量測系統控制器 28
3.4高壓電源供應器(High-Voltage Power Supply) 30
第四章 結果與討論 31
4.1 FPGA控制器 31
4.2 超音波量測系統前端電路設計 34
4.2.1超音波發射器 34
4.2.2 超音波接收器 37
4.3 PFC 高壓電源供應器 38
4.4 超音波Reflection Mode量測結果 40
實驗1:500KHz量測不同厚度假體之參數 41
實驗2:700KHz量測不同厚度假體之參數 47
4.5 超音波Transmission Mode量測結果 54
實驗1:量測假體為壓克力立方體(厚度為20.5mm) 54
實驗2:量測假體為壓克力立方體(厚度為9.5mm) 58
4.5 超音波量測人機介面 64
第五章 結論與未來展望 65
5.1結論 65
5.2未來展望 66
參考文獻 67
自述 70

[1]J. Mallatt, E. N. Marieb, P.B.Wilhelm, Human Anatomy, San Francisco Benjamin Cummings, pp. 129, 2003.
[2]Pfizer Australia Health Report, “Osteoporosis And Your Bones, 2006.
[3]C. Christiansen, Osteoporosis: Diagnosis and Management Today and Tomorrow, Bone, vol. 17, pp. 513-516, 1995.
[4]P. Moilanen, V. Kilappa, P. H. Nicholson, J. Timonen, and S. Cheng, Thickness Sensitivity of Ultrasound Velocity in Long Bone Phantoms, Ultrasound Med Biol, vol. 30, pp. 1517-21, 2004.
[5]C. M. Langton, A. V. Ali, C. M. Riggs, G. P. Evans, and W. Bonfield, A Contact Method for the Assessment of Ultrasonic Velocity and Broadband Attenuation in Cortical and Cancellous Bone, Clin Phys Physiol Meas, vol. 11, pp. 243-9, 1990.
[6]G. Brandenburger, L. Avioii, C. C. III, R. Heaney, R. Poss, G. Pratt, and R. Recker, In-Vivo Measurement of Osteoporotic Bone Fragility with Apparent Velocity of Ultrasound, IEEE Ultrasonic Symposium, pp. 1023-1027, 1989.
[7]M. J. Grimm and J. L. Williams, Assessment of Bone Quantity and 'Quality' by Ultrasound Attenuation and Velocity in the Heel, Clinical Biomechanics, vol. 12, pp. 281-285, 1997.
[8]J. Toyras, M. T. Nieminen, H. Kroger, and J. S. Jurvelin, Bone Mineral Density, Ultrasound Velocity, and Broadband Attenuation Predict Mechanical Predict Mechanical Properties of Trabecular Bone Differently, Bone, vol. 31, pp. 503-507, 2002.
[9]L. Serpe and J. Y. Rho, The Nonlinear Transition Period of Broadband Ultrasound Attenuation as Bone Density Varies, J Biomech, vol. 29, pp. 963-6, 1996.
[10]P. Augat, H. Reeb, and L. E. Claes, Prediction of Fracture Load at Different Skeletal Sites by Geometric Properties of the Cortical Shell, J Bone Miner Res, vol. 11, pp. 1356-63, 1996.
[11]O. Louis, J. Willnecker, S. Soykens, P. Van den Winkel, and M. Osteaux, Cortical Thickness Sssessed by Peripheral Quantitative Computed Tomography: Accuracy Evaluated on Radius Specimens, Osteoporos Int, vol. 5, pp. 446-9, 1995
[12]S. C. Lee, B. S. Coan, and M. L. Bouxsein, Tibial Ultrasound Velocity Measured in Situ Predicts the Material Properties of Tibial Cortical Bone, Bone, vol. 21, pp. 119-25, 1997.
[13]P. Laugier, B. Fournier, and G. Berger, Ultrasound Parametric Imaging of the Calcaneus: In Vivo Results with a New Device, Calcif Tissue Int., vol. 58, pp. 326-331, 1996.
[14]M. Pithioux, P. Lasaygues, and P. Chabrand, An Alternative Ultrasonic Method for Measuring the Elastic Properties of Cortical Bone, J Biomech, vol. 35, pp. 961-8, 2002.
[15]J. Okyere and A. J. Cousin, “The Design of High Voltage SCR Pulse Generator for Ultrasonic Pulse Echo Applications, Ultrasonics, pp. 81-84, 1979.
[16]P. Mattila and M. Luukkla, “FET Pulse Generator for Ultrasonic Pulse Echo Applications, Ultrasonics, pp.235-237, 1981.
[17]J. A. Brown and G. R. Lockwood, “A Low-Cost, High Performance Pulse Generator for Ultrasound Imaging, IEEE Transactions On Ultrasound, Ferroelectrics, and Frequency Control, pp. 848-851, 2002.
[18]Geoff R. Lockwood, John W. Hunt and F. Stuart Foster, The Design of Protection Circuitry for High-Frequency Ultrasound Imaging System, IEEE Trans. On Ultrasound, Ferroelectrics, and Frequency Control, Vol. 38, No.1, 1991
[19]D. H. Christopher F. Njeh, Claus C. Gluer, Thomas Fuerst and Harry K. Genant. , Quantitative Ultrasound : Assessment of Osteoporosis and Bone Status, London Martin Dunitz, 1999.
[20]Douglas A. Christensen, Ultrasonic Bioinstrumentation, New York: Wiley, 1988.
[21]李志緯, 陳天送, 姚維仁 “利用超音波技術評估骨頭的機械特性, 成功大學醫學工程研究所碩士論文, 民國九十年.
[22]IRF840 , http://wwww.ges.cz/sheet/i/irf840.pdf
[23]AD797, http://www.analog.com/UploadedFiles/Data_Sheets/507345751AD797_d.pdf
[24]AD811, http://www.analog.com/UploadedFiles/Data_Sheets/36407146AD811_e.pdf
[25]友晶科技, http://www.terasic.com.tw/tw/
[26]P. M. Gammell, “IGBT-Based Kilovoltage Pulsers for Ultrasound Measurement Applications, IEEE Transactions On Ultrasound, Ferroelectrics, and Frequency Control, vol.50, no.12, 2003.
[27]G. R. Lockwood, J. W. Hunt, F. S. Foster, “The Design of Protection Circuitry for High-Frequency Ultrasound Imaging Systems, IEEE Transactions On Ultrasound, Ferroelectrics, and Frequency Control, vol.38, no.1, 1991.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top