跳到主要內容

臺灣博碩士論文加值系統

(44.211.31.134) 您好!臺灣時間:2024/07/22 19:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:翁媛
研究生(外文):YuanWong
論文名稱:從多張影像自動建構三維人臉模型
論文名稱(外文):Automatic Construction of 3d Face Models Using Images
指導教授:詹寶珠詹寶珠引用關係
指導教授(外文):Pau-Choo Chung
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電腦與通信工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:32
中文關鍵詞:人臉特徵點三維人臉模型
外文關鍵詞:Facial features3D face model
相關次數:
  • 被引用被引用:0
  • 點閱點閱:214
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
從二維影像建立出的三維人臉模型可以應用在許多地方,比如人臉辨識,整形手術成果評估,三維動畫等等。雖然目前有不少文獻提出如何建構人臉模型,但大部分建構模型時所需要的人臉特徵點,是由手動點選的,所以本論文的目的是為了使建模的過程完全自動化。我們採用Active Appearance Model (AAM)自動擷取人臉特徵點並且提出一個簡單的方法來估測AAM在影像上的初始位置以提高擷取特徵點的準確率。根據AAM所求出的特徵點位置,將可變模型(3D Morphable Model)對齊到影像中的人臉上,再根據maximum a posteriori estimator (MAP)來找出模型最佳參數,使得建立出來的人臉模型形狀與影像中的相近,接下來把影像人臉貼合在模擬出的三維形狀,就建構完成三維人臉模型。本論文對不同光源,人種影像做自動特徵點偵測,在正面影像的準確度高於Smallest Univalue Segment Assimilating Nucleus (SUSAN)演算法。
The 3-dimensional (3D) face model based on two-dimensional images has been applied to many situations, such as facial recognition, facial surgery simulation, and 3D animation. Although a great deal of literature has addressed the construction of face model, it is restricted to define facial feature points manually. The purpose of this paper is to automate the process of 3D model construction.Active Appearance Model (AAM) automatically extracts facial features is adopted. In addition, a simple method of estimating initial position of AAM increases the accuracy of extraction is introduced. Based on feature points position obtained from AAM, 3D Morphable Model is aligned to face on the image. Accordingly, maximum a posteriori estimator (MAP) will sort out the best model parameters such that the appearance obtained from 3D face model is resemble to the test image. For automatic extracting face features from frontal face image, this paper has better accuracy than Smallest Univalue Segment Assimilating Nucleus (SUSAN) in different light sources environments and race of human.

第一章 緒論 1
第二章 臉部特徵點擷取 3
2.1 AAM方法介紹 3
2.1.1 建立Active Shape Model(訓練階段) 3
2.1.2 建立Active Appearnce Model(訓練階段) 6
2.1.3 Active Appearnce Model Search 7
第三章 臉部三維建模 12
3.1 三維可變臉部模型(MORPHABLE 3D FACE MODEL) 12
3.2 以模型為基礎的影像分析 13
3.2.1求可形變模型三維點的投影 13
3.2.2 求出符合影像的最佳三維模型 17
3.2.3 從二維測試影像建立臉部三維模型之步驟 18
第四章 實驗結果 20
4.1 特徵點擷取結果 20
4.1.1正面 20
4.1.2其他角度 23
4.2 三維建模結果 28
第五章 結論與展望 30
參考文獻 31
[1]Y. Tian, T. Kanade, and J. F. Cohn, Recognizing action units for facial expression analysis, IEEE Trans. Pattern Anal. Machine Intell. Vol. 23, no. 2,pp. 97-115, Feb. 2001
[2]T. F. Cootes, G. J Edwards, and C, J. Taylor, Active Appearance Models, Proc. of the European Conference on Computer Vision 1998
[3]T. F. Cootes, G. J Edwards, and C, J. Taylor, Active Appearance Models, IEEE Transactions on Pattern Analysis and Machine Intelligence 2001
[4]T. F. Cootes, C, J, Taylor, D. H. Cooper, and J. Graham. Active shape models-their training and application. Computer Vision and Image Understanding, 61(1):38-59, January 1995.
[5]T. F. Cootes and C. J. Taylor, Statistical models of appearance for medical image
analysis and computer vision, Proc. SPIE Medical Imaging, 2001.
[6]S. H. Lin, P. F. Hsieh, and C. H. Wu, Facial phoneme extraction for Taiwanese sign language recognition, Springer-Verlag Lecture Notes in Computer Science ISSN, vol. 3748, pp. 187-194, Oct. 2005.
[7]T. Goto, W-S. Lee, and N. M-Thalmann, Facial feature extraction for quick 3D face modeling, ELSEVIER Signal Processing: Image Communication 17 (2002) 243-259
[8]Dirk-Jan Kroon, Active Shape Model (ASM) and Active Appearance Model (AAM), http://www. mathworks. com/matlabcentral/fileexchange/
[9]M. Turk, A. Pentland, Eigenfaces for Recognition, Journal of Cognitive Neurosicence, Vol. 3, No. 1, Win. 1991, pp. 71-86
[10]W. Zhao, R. Chellappa, A. Rosenfeld, Face recognition: a literature survey, ACM Computing Surveys 35 (December) (2003)399–458.
[11]Yuille, A. L. , Cohen, D. S. , and Hallinan, P. W. 1992. Feature extracting from faces using deformable templates. Int. J. Comput. Vis. 8, 99–112.
[12]V. Blanz, T. Vetter, Face recognition based on fitting a 3D morphable model,IEEE Transactions on Pattern Analysis and Machine Intelligence 25 (2003) 1063–1074
[13]V. Blanz and T. Vetter. A morphable model for the synthesis of 3D faces. In Computer Graphics, Annual Conference Series (SIGGRAPH), pages 187–194, 1999.
[14]Richard Hartley and Andrew Zisserman,Multiple View Geometry in Computer Vision,second edition, Cambridge University Press,ISBN: 052154051, 2004.
[15]C. M. Bishop, Pattern Recognition and Machine Learning. Springer,August 2006.
[16]USF DARPA Human-ID 3D Face Database, Courtesy of Prof. Sudeep Sarkar,University of South Florida, Tampa, FL.
[17]V. Blanz, K. Scherbaum, and H.-P. Seidel. Fitting a morphable model to 3D scans of faces. In ICCV 2007, pages 1–8, 2007.
[18]T.Kurihara and K. Arai,A Transformation Method for Modeling and Animation of the Human Face from Photographs,Computer Animation’91,Springer-Verlag,45-38,1991
[19]Gu, Hua, Guangda Su, and Cheng Du, Feature Points Extraction from Faces, Proceedings of Image and Vision Computing New Zealand Conference, pp. 154-158, 2003.
[20]FERET Database, http://www. itl. nist. gov/iad/humanid/feret/feret_master. html
[21]資策會:資訊應用與整合技術開發第二期計畫分項-健康照護應用創新技術研發98年研究成果
[22]W.S.Lee and N.M. Thalmann, Head modeling from pictures and morphing in 3d with image metamorphosis based on triangulation, CAPTECH'98 Lecture Notes in Artificial Intelligence(LANI)1537,242-253,1998.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top