(3.236.118.225) 您好!臺灣時間:2021/05/16 14:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:呂孟珊
研究生(外文):Meng-Shan Lu
論文名稱:實廠廢棄活性污泥萃取PHAs再利用製成生物可分解塑料技術之研發
論文名稱(外文):Research and development of the biodegradable plastic production technology by reusing the polyhydroxyalkanoates extracted from the wasted activated sludge of a full-plant.
指導教授:蔡勇斌蔡勇斌引用關係
指導教授(外文):Yung-Pin Tsai
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:126
中文關鍵詞:下水污泥生物可分解性塑膠聚羥基烷基酸酯生物高分子
外文關鍵詞:sewage sludgebiodegradable plasticpolyhydroxyalkanoates (PHAs)biopolymers
相關次數:
  • 被引用被引用:1
  • 點閱點閱:277
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討由廢棄實廠污泥萃取PHAs的方法,找出次氯酸鈉消化法最適條件為次氯酸鈉濃度20v/v%,污泥液固比0.67 mLmg-1,次氯酸鈉浸置時間30 min,在此條件下萃取所得PHAs 純度為72.5±1.75 wt%,PHAs 含量為26.3±0.10 mgPHAsgVSS-1;次氯酸鈉-氯仿兩相萃取法最適條件為次氯酸鈉濃度30v/v%,污泥液固比2.00 mLmg-1,次氯酸鈉浸置時間45 min,萃取所得PHAs 純度為99.3±5.16 wt%,PHAs 含量為47.7±1.72 mgPHAsgVSS-1;表面活性劑-次氯酸鈉萃取法最適條件為次氯酸鈉濃度40 v/v%,污泥液固比1.00 mLmg-1,次氯酸鈉浸置時間5 min,萃取所得PHAs 純度大於99.5 wt%,PHAs含量為44.2±0.89 mgPHAsgVSS-1。
萃取所得PHAs塑料經拉力測試結果顯示,次氯酸鈉消化法與次氯酸鈉-表面活性劑萃取法兩種不同萃取方法所得PHAs試片,其抗拉強度皆為0.09 MPa,拉伸破壞度分別為8.86 %及10.1 %,楊氏係數分別為1.42 MPa及1.23 MPa。生物分解性掩埋測試結果顯示,同樣以次氯酸鈉消化法萃取所得PHAs塑料,添加甘油並不會影響生物分解速率;而次氯酸鈉消化法與次氯酸鈉-表面活性劑萃取法兩種不同萃取方法所得PHAs塑料,在有添加甘油條件時,生物分解速率有顯著差異;非熱壓試片上以次氯酸鈉-表面活性劑法萃取之塑料,生物分解速率明顯大於次氯酸鈉消化法萃取之塑料,但熱壓試片則相反。
由各萃取方法成本評估結果知,萃取1kg PHAs次氯酸鈉消化法所需成本為98.6 NT$,表面活性劑法-次氯酸鈉萃取法所需成本為170 NT$,氯仿-次氯酸鈉兩相萃取法所需成本為256 NT$。
The technology of extraction PHAs from waste sewage sludge was developed in the study. The adequate extraction conditions for PHAs recovery digested by sodium hypochlorite were 20%(v/v) of hypochlorite concentration , 0.67 mLmg-1of liquid-solid ratio and 30 min of treatment time . Under these conditions, the purity of recovered PHAs was 72.5±1.75 wt% and the content of recovered PHAs was 26.3±0.10 mgPHAsgVSS-1. The adequate extraction conditions for PHAs recovery digested by sodium hypochlorite solution and chloroform were 30%(v/v) of hypochlorite concentration, 2.00 mLmg-1of liquid-solid ratio and 45 min of treatment time . Under these conditions, the purity of recovered PHAs was 99.3±5.16 wt% and the content of recovered PHAs was 47.7±1.72 mgPHAsgVSS-1. The adequate extraction conditions for PHAs recovery digested by sodium surfactant-hypochlorite were 40%(v/v) of hypochlorite concentration, 1.00 mLmg-1 of liquid-solid ratio and 5 min of treatment time. Under these conditions, the purity of recovered PHAs was higher than 99.5 wt% and the content of recovered PHAs was 44.2±0.89 mgPHAsgVSS-1.
The tensile strength tests of the PHAs-starch blend films extracted by sodium hypochlorite digestion method and sodium hypochlorite solution and chloroform digestion method were the same (0.09MPa), extension to break tests were 8.86 % and 10.1 % respectively, Young’s modulus coefficient were 1.42MPa and 1.23 MPa respectively. For the biodegradation test, the addation of a formula of glycerol did not significantly impact the biodegradation rate of the biodegradation plastic produced by the PHAs (hypochlorite)-starch blends. There was a significant difference between the biodegradation rates of PHAs (hypochlorite )-starch blends and PHAs(surfactant-hypochlorite)-starch blends with the addition of glycerol. For non-hot pressing shape sample, the biodegradation rate of PHAs (surfactant-hypochlorite)-starch blends was significantly higher than that of PHAs (hypochlorite )-starch blends. But, for hot pressing shape sample, the result was inverse.
The cost for extracting 1 kg of PHAs by the method of sodium hypochlorite digestion was about NT$ 98.6, NT$ 170 for hypochlorite solution and chloroform digestion method and NT$ 256 for sodium surfactant-hypochlorite digestion method.
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 3
1.3 研究流程及重點 3
1.4 研究內容與架構 4
第二章 文獻回顧 6
2.1國內下水污泥研究情形 6
2.2 分解性塑膠種類 8
2.2.1 光降解性塑膠(Photodegradable Plastics) 8
2.2.2 崩解性塑膠(Disintegradable Plastics) 8
2.2.3 生物可分解塑膠(Biodegradable Plastics) 8
2.2.4 生物可分解塑膠特性 11
2.3 聚羥基烷基酸酯(Polyhydroxyalkanoates, PHAs) 14
2.3.1 PHAs簡述 14
2.3.2 PHAs種類 14
2.3.4 PHAs優點 15
2.4 PHAs生產來源 17
2.4.1. PHAs生成菌種類 17
2.4.2. PHAs合成之代謝途徑及組成 18
2.4.3 PHAs生產方式之考量因素 20
2.4.4 混種培養下PHAs生產機制比較 21
2.4.4.1 PAOs/GAOs系統 21
2.4.4.2 微氧/好氧交替培養系統(Microaerophilic-aerobic system) 22
2.4.4.3 過飽/過飢交替培養系統(Feast and famine cycling) 22
2.5 PHAs萃取 24
2.5.1 PHAs萃取技術 24
2.5.1.1 有機溶劑法 25
2.5.1.2 次氯酸鈉消化法 25
2.5.1.3 次氯酸鈉-氯仿兩相萃取法 26
2.5.1.4 酶解法 26
2.5.1.5 表面活性劑-次氯酸鈉法 26
2.5.2 國內PHAs萃取技術 27
2.6 合膠技術 30
2.6.1、澱粉結構介紹 30
2.6.1.1 直鏈澱粉(amylase) 30
2.6.1.2 支鏈澱粉(amylopectin) 30
2.6.1.3 可溶性澱粉(soluble starch) 31
2.6.2 澱粉糊化 31
2.6.3 澱粉合膠 33
第三章 實驗設備與方法 36
3.1 污泥來源 36
3.2 實驗方法 36
3.2.1 PHAs萃取預先處理 36
3.2.2 PHAs萃取方法 36
3.2.2.1 有機溶劑萃取法 36
3.2.2.2 次氯酸鈉萃取法 37
3.2.2.3 氯仿-次氯酸鈉萃取法 37
3.2.2.4 SDS-次氯酸鈉萃取法 37
3.2.3 PHAs澱粉合膠實驗 37
3.2.3.1 製備Thermoplastic starch (TPS) 37
3.2.3.2 製備PHB/starch合膠 38
3.2.3.3 熱壓製備拉伸試片 38
3.3 分析方法與設備 38
3.3.1 以GC-MS分析PHAs 38
3.3.1.1 PHAs含量計算 38
3.3.1.2 PHAs純度計算 40
3.3.1.3 數據統計分析 40
3.3.2 破壞度測試 41
3.3.3 熱分析 42
3.3.3.1 熱重分析儀測試(Thermogravimetric Analyzer, TGA) 42
3.3.3.2 微差熱掃描分析儀(Differential Scanning Calorimetry, DSC) 43
3.3.4 生物可分解掩埋測試(Soil Test) 43
3.3.5 研究設備 44
第四章 結果與討論 45
4.1 不同廢棄生物污泥來源 45
4.2 預先處理方式對PHAs萃取之影響 46
4.3 不同萃取方法對廢棄污泥中PHAs萃取之影響 48
4.3.1 次氯酸鈉消化法對PHAs萃取之影響 48
4.3.1.1 不同操作因子對PHAs萃取純度及含量之影響 48
4.3.1.2 次氯酸鈉消化法最適條件穩定性測試 51
4.3.2 次氯酸鈉-氯仿兩相萃取法對PHAs萃取之影響 53
4.3.2.1 不同操作因子對PHAs萃取純度及含量之影響 53
4.3.2.2 次氯酸鈉-氯仿兩相萃取法最適條件穩定性測試 56
4.3.3 表面活性劑-次氯酸鈉萃取法對PHAs萃取之影響 58
4.3.3.1 不同操作因子對PHAs萃取純度及含量之影響 58
4.3.3.2 表面活性劑-次氯酸鈉萃取法最適條件穩定性測試 61
4.3.4 有機溶劑法對PHAs萃取之影響 63
4.4 最適條件用於萃取不同來源廢棄污泥PHAs純度及含量之綜合比較 65
4.5 混合不同比例澱粉對PHAs合膠性質之影響 70
4.5.1 破壞度測試 70
4.5.2 熱分析 75
4.5.2.1 熱重分析儀(TGA)結果 75
4.5.2.2 微差熱掃描分析儀(DSC)結果 76
4.5.3 生物可分解掩埋測試 78
4.5.3.1 非熱壓試片結果 78
4.5.3.2 熱壓試片結果 83
4.6 廢棄生物污泥萃取PHAs建議作業程序 88
4.6.1 次氯酸鈉消化法建議作業程序 88
4.6.2 表面活性劑-次氯酸鈉萃取法作業程序 89
4.6.3 氯仿-次氯酸鈉兩相萃取法作業程序 90
4.7 成本評估 91
第五章 結論與建議 95
5.1 結論 95
5.2 建議 96
參考文獻 98
附錄 106
黃建銘 (2008) 「生物可分解塑膠的市場應用與最新趨勢」,2008新世紀環境材料的挑戰與機會研討會論文,台中。
簡志青 (2003) 「淺談微生物系生物可降解性塑膠」,化工資訊與商情月刊,5(11)。
陳志成 (2004) 「利用廉價農業原料來大量生產生物分解性高分子PHA 之研究(III)」,行政院國家科學委員會專題研究計畫成果報告。
邱仁杰 (2001) 「浸水式生物濾床處理污水營養物質之研究」,博士論文,國立中央大學環境工程研究所,中壢。
黃廷敏 (1992) 「觸媒對混合亞克力單體接枝澱粉聚合反應之影響」,碩士論文,文化大學應用化學所,台北。
劉小萍(2001)「澱粉-聚醋酸乙烯酯與澱粉-聚乙烯醇接枝共聚物之合成及性質研究」,碩士論文,台灣大學化學工程研究所,台北。
洪明宏 (2002) 「下水污泥綠農地應用及環境限制之研究」,碩士論文,國立台北科技大學環境規劃與管理研究所,台北。
陳高孝 (2004) 「下水道普及率提升衍生污泥處理與管理之研究」,碩士論文,國立台北科技大學環境規劃與管理研究所,台北。
王創正 (2006) 「廢棄有機污泥以連續批次厭氧消化產氫及甲烷之研究」,碩士論文,長榮大學職業安全與衛生學系,台南。
張添晉、游勝傑 (2006) 「剩餘污泥完全消化零廢棄創新技術之研究」,行政院國家科學委員會專題研究計畫成果報告。
張添晉 (2007) 「下水污泥減量零廢棄技術與策略之研究」,行政院國家科學委員會專題研究計畫。
邱仁杰 (2009) 「下水污泥減量與零廢棄技術與策略之研究-子計畫五:下水污泥源頭減量技術與程序管理之研究」,行政院國家科學委員會專題研究計畫成果報告。
行政院環境保護署,事業廢棄物管制資訊網,http://waste.epa.gov.tw/prog/IndexFrame.asp,2009
行政院環境保護署,綠色生活資訊網,http://greenliving.epa.gov.tw/GreenLife/green-life/index.aspx,2009
林瀚淵、林金雀 (2007) 「石化工業年鑑」,經濟部技術處發行,工研院研資中心出版。
Ander, A.J., Dawes, E.A. (1990). Occurrence, metabolism, metabolic role and industrial uses of bacterial PHA. Microbiol. Mol. Biol. Rev. 54, 450-472.
Berger, E., Ramsay, B.A., Ramsay, J.A., Chavarie, C. (1989). PHB recovery by hypochlorite digestion of non-PHB biomass. Biotechnology Techniques 3 (4), 227-232.
Beun, J.J., Dirks, K., Van Loosdrecht, M.C.M., Heijnen, J.J. (2002). Poly-(hydroxybutyrate) metabolism in dynamically fed mixed microbial cultures. Water Res. 36, 1167-1180.
Brandl, H., Gross, R.A., Lenz, R.W., Fuller, R.C. (1988). Pseudomonas oleovorans as a source of Poly(β-Hydroxyalkanoayes) for Potential Applications as biodegradable polyesters. Appl. Environ. Microbiol. 54, 1977-1982.
Byrom, D. (1994). Polyhydroxyalkanoates, In: Mobley DP (ed) Plastic from microbes: microbial synthesis of polymers and polymer precursors. Hanser Munich, 5-33.
Check, J.S. and Hartman, P. (1993). Competition between polyphosphate and polysaccharide accumulating bacteria in enhanced biological phosphate removal systems. Water Res. 27, 1219-1225.
Chen, Y.G., Yang, H.Z., Gu, G.W. (2000). Effects of biological treatment process of waste water on microorganism intracellular PHA. Chemical Industry and Enginnerring progress 19(5), 36-39.
Cheng, D.G., Jian, Y., Jian, C. (2002). Coupling system for food wastes anaerobic digestion and polyhydroxyalkanoates production with Ralstonia eutropha. The Chinese Journal of Process Engineering 2 (2), 161-167.
Chrissafis, K., Paraskevopoulos, K.M., Bikiaris, D.N. (2005). Thermal Degradation Mechanism of Poly(Ethylene Succinate) and Poly(Butylene Succinate): Comparative Study. Thermochimica Acta 435(2), 142-150.
Coffin, D.R., Fishman, M.L., Cooke, P.H. (1995). Mechanical and microstructural properties of pectin/starch films. J. Appl. Polym. Sci. 57, 663-670.
Doi, Y. and Abe, C. (1990). Biosynthesis and characterization of a new bacterial copolyesters of 3-hydroxyalkanoates and 3-hydroxy-ω-chloroalkanoates. Macromolecule. 23. 3705-3707.
Erkske, D., Viskere, I., Dzene, X., Savenkova, X., (2006). Biobased polymer composites for films and coatings. Proc. Estonian Acad. Sci. Chem. 55(2), 70-77.
Fukui, T., Kichise, T., Yoshida, Y., Doi, Y. (1997). Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyheptanoate) terpolymers by recombinant Alcaligenes eutrophus. Biotechnol. Lett. 19 (11), 1093-1097.
George, E.R., Sullivan, T.M., Park, E.H. (1994). Thermoplastic starch blends with a poly(ethylene-co-vinyl alcohol): Processability and physical properties. Polym. Eng. Sci. 34, 17-23.
Griffin, G.J.L. (1994). Chemistry and technology of biodegradable polymers. Springer 154.
Godbole, S., Gote, S., Latkar, M., Chakrabarti, T., (2003). Preparation and characterization of biodegradable poly-3-hydroxybutyrate–starch blend films. Bioresour. Technol. 86, 33-37.
Hahn, S.K., Chang, Y.K., Kim, B.S., Chang, H.N. (1994). Optimization of microbial poly(3-hydroxybutyate) recovery using dispersions of sodium-hypochlorite solution and chloroform. Biotechnol. Bioeng. 144 (2), 256-261.
Hahn, S.K., Chang, Y.K., Lee, S.Y. (1995). Recovery and characterization of poly(3-hydroxybutyric acid) synthesized in Alcaligenes eutrophus and recombinant Escherichia coli. Appl. Environ. Microbiol. 61, 34-39.
Helenius, A., and Simons, K. (1975). Solubilization of membranes by detergents. Biochim. Biophys. Acta 415, 29-79.
Holmes, P.A. (1985) Applications of PHB-a microbially produced biodegradable thermoplastic. Physics in Technology 16, 32-36.
Holmes, P.A. (1988). Biologically produced PHA polymers and copolymers. In: Bassett DC, editor. Development in crystalline polymers. 2, London: Elsevier,1-65.
Holmes, P.A. and Lim, G.B. (1990). Separation process, U.S. Patent 4, 910, 145.
Huang, J., Shetty, A.S., Wang, M. (1990). Biodrgradable Plastics: A Review. Adv. Polym. Tech. 10(1), 23-30.
Kasemsap, C., and Wantawin, C. (2007). Batch production of polyhydroxyalkanoate by low-polyphosphate-content activated sludge at varying pH. Bioresour. Technol. 98, 1020-1027.
Kim, B.S. and Chang, H.N. (1998). Production of poly(3-hydroxybutyrate) from starch by Azotobacter chroococcum. Biotechnol. Lett. 20(2), 109-112.
Lafferty, R.M., Korsatko, B., Korsatatko, W. (1988). Microbial production of poly-hydroxybutyric acid. Biotechnology Rehm, H.J. and Reed, G. (eds.), VCH publishers, New York, 135-176.
Lee, S.Y. and Chang, H.N. (1994). Effect of complex nitrogen source on the synthesis and accumulation of poly(3-hydroxybutyric acid) by recombinant Escherichia coli in flask and febatch cultures. J. Environ. Polym. Degrad. 2, 169-176.
Lee, S.Y. and Chang, H.N. (1995). Production of poly-(hydroxyalkanoic acid). Adv. Biochem. Eng. Biotechnol. 52, 25-58.
Lee, S.Y. (1996a). Bacterial Polyhydroxyalkanoates. Biotechnol. Bioeng. 49, 1-14.
Lee, S.Y. (1996b). Plastic bacteria? Progress and prospects for polyhydroxyalkanoates production in bacteria. Trends Biotechnol. 14, 431-438.
Liu, W.T., Mino, T., Nakamura, K., Matsuo, T. (1996). Glycogen accumulating population and its anaerobic subatrate uptake in anaerobic-aerobic activated sludge without biological phosphate removal. Water Res. 30, 75-82.
Luengo, J.M., Garcia, B., Sandoval, A., Naharro, G., Olivera, E.R. (2003). Bioplastics from microorganisms. Curr. Opin. Microbiol. 6, 251-260.
Lemos, P.C., Serafim, L.S., Santos, M.M., Reis, M.A., Santos, H. (2003). Metabolic pathway for propionaye utilization by phosphorus-accumlating organisms in activated sludge: 13C labeling and in vivo nuclear magnetic resonance. Appl. Environ. Microbiol. 69(1), 241-251.
Madison, L.L. and Hisman, G.W. (1999). Metabolic Engineering of Poly(3-Hydroxyalkanoates) From DNA to plastic. Microbiol. Mol. Biol. Rev. 63, 21-53.
Ojumu, T.V., Yu, J., Solomon, B.O. (2004). Production of Polyhydroxyalkanoates a bacterial biodegradable polymer. Afr. J. Biotechnol. 3, 18-24.
Park, J.W., Im, S.S., Kim, S.H., Kim, Y.H. (2000). Biodegradable polymer blends of poly(L-lactic acid) and gelatinized starch. Polymer Eng. Sci. 40, 2539-2550.
Poirier, Y., Nawrath, C., Somerville, C. (1995). Production of polyhydroxyalkanoates, a family of biodegradable plastics and elastomers, in bacteria and plants. Biotechnology 13, 142-150.
Poirier, Y. (2002). Polyhydroxyalknoate Synthesis in Plants as a Tool for Biotechnology and Basic Studies of Lipid Metabolism. Prog. Lipid Res. 41(2), 131-155.
Punrattanasin, W. (2001). The utilization of activated sludge polyhydroxyalkanoates for the production of biodegradable plastics. Faculty of the Virginia Polytechnic Institute and State University: Ph.D, Thesis
Purushothaman, M., Anderson, R.K.I., Narayana, S., Jayaraman, V.K. (2001). Industrial Byproducts as Cheaper Medium Components Influencing the Production of Polyhydroxyalkanoates (PHA)-Biodegradable Plastics. Bioprocess Biosyst. Eng. 24(3),131-136.
Philip, S., Keshavarz, T., Roy, I. (2007). Polyhroxyalkanoates: biodegradable polymers with a range of application. J. Chem. Technol. Biotechnol. 82, 233-247.
Reis, K.C., Pereira, J., Smith, A.C., Carvalho, C.W.P., Wellner, N., Yakimets, I., (2008). Characterization of polyhydroxybutyrate-hydroxyvalerate (PHB-HV)/maize starch blend films. J. Food Process Eng. 89, 361-369.
Ramsay, J.A., Berqer, E., Voyer, R., Chavarie, C., Ramsay, B.A. (1994). Extraction of poly-3-hydroxyalkanoic using chlorinated solvents. Biotechnology Techniques 8(8), 589-594.
Ramsay, J.A., Berqer, E., Ramsay, B.A., Chavarie, C. (1990). Recovery of poly-3-hydroxyalkanoic acid granulesby surfactant-hypochlorite treatment. Biotechnology Techniques 4(4), 221-226.
Ren, X. (2003). Biodegradable plastics: a solution or a challenge? Journal of Cleaner Production 11(1), 27-40.
Roh, K.S., Yeom, S.H., Yoo, Y.J. (1995). The effects of sodium bisulfite in extraction of PHB by hypochlorite. Biotechnology Techniques 9(10), 709-712.
Saito, Y., Soejima, T., Tomozawa, T., Doi, Y., Kiya, F. (1995). Production of biodegradable plastics from volatile acid using activated sludge. Environ. Systems. Eng. 52, 145-154.
Satoh, H., Iwamoto, Y., Mino, T. (1998a) Activated sludge as a possible source of biodegradable plastic. Water Sci. Technol. 38, 103-109.
Satoh, H., Mino, T., Matsuo, T. (1998b) Anaerobic uptake of glutamate and aspartate by enhanced biological phosphorus remove activated sludge. Water Sci. Technol. 37, 579-582.
Salehizadeh, H., Van, Loosdrecht, M.C.M. (2004). Production of polyhydroxyalkanoates by mixed culture: recent trends and biotechnological importance, Biotechnol. Adv. 22, 261-279.
Satyanarayana, K.G, Arizaga, G.C.G, Wypych, F. (2009). Biodegradable composites based on lignocellulosic fibers-An overview. Prog. Polym. Sci. 34, 982-1021.
Seymour, R.B. and Carraher, C.E. (2000). Polymer Chemistry, 3rd, 薛敬和 主譯, 高立.
Sudesh, K., Abe, H., Doi, Y. (2000). Synthesis, structure and properties of polyhydroxyalkanoates biological polyesters. Prog. Polym. Sci. 25, 1503-1555.
Sudesh, K. and Doi, Y. (2000). Molecular Design and Biosynthesis of Biodegradable Polyesters. Polym. Adv. Technol. 11, 8-12.
Seidenstücker, T., Fritz, H.G. (1998). Innovative biodegradable materials based upon starch and thermoplastic poly(ester-uretihane) (TPU), Polym. Degrad. Stab. 59, 279-285.
Steinbuchel, A. and Valentin, H.E. (1995). Diversity of bacterial polydroxyalkanoic acids. FEMS Microbiol. Lett. 128, 219-228.
Steinbüchel, A. and Lütke-Eversloh, T. (2003). Metabolic engineering and pathway construction for biotechnological production of polyhydroxyalkanoates in microorganisms. Biochem. Eng. J. 16, 81-96.
Takabatake, H., Satoh, H., Mino, T., Matsuo, T. (2000). Recovery of biodegradable pilatic from activated sludge process. Water Sci. Technol. 42, 351-356.
Takabatake, H., Satoh, H., Mino, T., Matsuo, T. (2002). PHA potential of activated sludge treating wastewater. Water Sci. Technol. 45, 119-126.
Taguchi, S., Nakamura, H., Kichise, T., Tsuge, T., Yamato, I., Doi, Y. (2003). Production of polyhydroxyalkanoate (PHA) from renewable carbon sources in recombinant Ralstonia eutropha using mutants of original PHA synthase. Biochem. Eng. J. 16(2), 107-113.
Taguchi, S. and Doi, Y. (2004). Evolution of Polyhydroxyalkanoate (PHA) Production System by Enzyme Evolution: Successful Case Studies of Directed Evolution. Macromol. Biosci. 4, 145-156.
Tohyama, M., Patarinska, T., Qiang, Z., Shimizu, K. (2002). Modeling of mixed culture and periodic control for PHB production. Biochem. Eng. J. 10, 157-173.
Ueno, T., Satoh, H., Mino, T., Matsuo, T. (1993). Production of biodegradable plastics. Polym. Preprin, 42, 981-986.
Van, Beynum, G.M.A and Roels, J.A. (1985). Starch conversion technology. New York, Marcl Dekker.
Van-Aalst van Leeuwen, M.A., Pot, M.A., Van, Losdrecht, M.C.M. (1997). Kinetic modeling of poly-(hydroxyalkanoate) production and consumption by Paracoccus pantotrophus under dynamic substrate supply. Biotechnol. Bioeng. 55, 773-782.
Van Losdrecht, M.C.M., Pot, M.A., Heijnen, J.J. (1997). Importance of bacterial storage polymers in bioprocess. Water Sci. Technol. 35, 41-47.
Van Loosdrecht, M.C.M. and Heijnen, J.J. (2002). Modeling of activated sludge processes with structured biomass. Water Sci. Technol. 45, 13-23.
Van de V.K. and Kiekens, P. (2002). Biopolymers: overview of several properties and consequences on their applications. Polymer testing 21, 433-42.
Wang, F. and Lee, S.Y. (1997). Poly(30hydroxybutyrate) production with high polymer content by fed-batch culture of alkaligenes latus under nitrogen limitation. Appl. Environ. Microbiol. 35, 567-576
Yamane, T (1993). Yield of Poly D(-)-3-hydroxybutyrate from Various Carbon Sources: A Theoritical Study. Biotechnol. Bioeng. 41, 165-170.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top