跳到主要內容

臺灣博碩士論文加值系統

(44.192.92.49) 您好!臺灣時間:2023/06/08 07:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王立慶
研究生(外文):Li-Ching Wang
論文名稱:流過兩個不同直徑圓柱流場之數值研究
論文名稱(外文):Numerical study on flow past two cylinders with different diameters
指導教授:彭逸凡
指導教授(外文):Yi-Fan Peng
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:地震與防災工程研究所
學門:環境保護學門
學類:環境防災學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:62
中文關鍵詞:巢狀卡氏網格內嵌法數值方法
外文關鍵詞:Nested Cartesian gridNumerical MethodEmbedding Method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:140
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
本文由巢狀網格來達到局部網格加密的效果。流場藉由 Navier-Stokes 方程及連續方程求解得之,解答邏輯過程採用分步法 (Fractional Step Method) 。對不穩定、具黏滯性且不可壓縮流流場,為求解複雜邊界,以巢狀網格解答流場過程中,含複雜邊界之障礙物則以 Ravoux 等人 [24] 發展的內嵌法 (Embedding Method) 處理之。本文數值方法以具二階精準度之中央插分法離散 Navier-Stokes 方程之空間項,時間項方面則利用 Adams-Bashforth 法處理對流項,以 Crank-Nicolson 法處理擴散項。本文首先以計算方型穴流 (Square lid-driven cavity flow) 測試本文數值模式於簡單邊界流場之有效性。透過與 Ghia 等人 [25] 的研究結果比對,結果十分吻合,證實本文數值模式之正確性,本文並以不同尺度網格計算結果,證實本文數值模式應用於簡單邊界流場具2階精準度。隨後,本文以 Wannier Flow 測試內嵌法於含複雜邊界流場之應用性。最後,我們應用巢狀網格法於渦漩逸出流場之抑制研究。
This article achieves the partial grid encryption by the nest shape grid the effect. The flow field solves it because of the Navier-Stokes equation and the equation of continuity, the explanation logical process uses the method of fractional steps (Fractional Step Method). To unstable, mounts the viscosity and the incompressible flow flow field, for the solution complex boundary, by the nest shape grid explanation flow field process, obstacle of including the complex boundary by the Ravoux et al. [24] development's in inlays the law (Embedding Method) to process it. This article numerical method by has second-order accurate the central committee to insert a minute law to be separated space of item the Navier-Stokes equation, a time aspect using the Adams-Bashforth law processing convection item, by Crank-Nicolson law processing proliferation item. This article first calculates Fang Xingxue the class (Square lid-driven cavity flow) to test this article numerical model validity in the simple boundary flow field. By with Ghia et al. [25] findings compared to right, the result tallies, confirmed that accuracy of this article numerical model, this article and by the different criterion grid computed result, confirmed this article numerical model applies in the simple boundary flow field has second-order accurate. Afterward, this article test inlays the law by Wannier in the Flow to contain utility of the complex boundary flow field. Finally, we apply the nest shape method of lattice to suppress the research in the turbulence transgression flow field.
中文摘要 I
英文摘要 II
圖目錄 VI
表目錄 XI
符號索引 XII
第一章、簡介 1
1.1 前言 1
1.2 文獻回顧 2
1.3 研究目的 3
1.4 本文大綱 4
第二章、理論方法 5
2.1分步法 5
2.2內嵌法 9
2.3巢狀網格加密法 12
第三章、數值方法驗證 19
3.1 內嵌法驗證 19
3.2巢狀網格加密法之檢驗 22
第四章、流過兩個不同直徑圓柱之流場/改變仰角 43
4.1控制位置仰角因子 44
第五章、結論 61
參考文獻 62
1.Chacon, L., and Lapenta, G., “A fully implicit, nonlinear adaptive grid strategy,” Journal of Computational Physics, Vol. 212, pp. 703-717 (2006).
2.Ding, H., and Shu, C., “A stencil adaptive algorithm for finite difference solution of incompressible viscous flows, ” Journal of Computational Physics, Vol. 214, pp. 397-420 (2006).
3.Shiau, Y.H., Peng, Y.F., Hwang, Robert R., and Hu, C.K., “Multistability and symmetry breaking in the 2-D flow around a square cylinder,” Physical Review E, Vol. 60, pp. 6188-6191 (1999).
4.Peng, Y.F., Shiau, Y.H., and Hwang, Robert R., “Transition in a 2-D lid-driven cavity flow,” Computers & Fluids, Vol. 32, pp. 337-352 (2003).
5.Berger, M.J., and Oliger, J., “Adaptive mesh refinement for hyperbolic partial differential equations,” Journal of Computational Physics, Vol. 53, pp. 484-512 (1984).
6.Khokhlov, A.M., “Fully threaded tree algorithms for adaptive refinement fluid dynamics simulations,” Journal of Computational Physics, Vol. 143, pp. 519-543 (1998).
7.Zhu, J.Z., and Zienkiewicz, O.C., “Adaptive techniques in the finite element method,” Commun. Appl. Numer. Meth., Vol. 4, pp. 197-204 (1988).
8.Durbin, P.A., and Iaccarino, G., “An approach to local refinement of structured grids,” Journal of Computational Physics, Vol. 181, pp. 639-653 (2002).
9.Pember, R.B., Bell, J.B., Colella, P., Curtchfield, W.Y., and Welcome, M.L., “An adaptive Cartesian grid method for unsteady compressible flow in irregular regions,” Journal of Computational Physics, Vol. 120, pp. 278-304 (1995).
10.Minion, M.L., “A projection method for locally refined grids,” Journal of Computational Physics, Vol. 127, pp. 158-178 (1996).
11.Almgren, A.S., Bell, J.B., Colella, P., Howell, L.H., and Welcome, M.L., “A conservative adaptive projection method for the variable density incompressible Navier–Stokes equations,” Journal of Computational Physics, Vol. 142, pp. 1-46 (1998).
12.Gerritsen, M., and Olsson, P., “Design and efficient solution strategy for fluid flows II. Stable high-order central finite difference schemes on composite adaptive grids with sharp shock resolution,” Journal of Computational Physics, Vol. 147, pp. 293-317 (1998).
13.Cao, W.M., Huang, W.Z., and Russell, R.D., “An r-adaptive finite element method based upon moving mesh PDEs,” Journal of Computational Physics, Vol. 149, pp. 221-244 (1999).
14.Li, R., Tang, T., and Zhang, P., “Moving mesh methods in multiple dimensions based on harmonic maps,” Journal of Computational Physics, Vol. 170, pp. 562-588 (2001).
15.Roma, A.M., Peskin, C.S., and Berger, M.J., “An adaptive version of the immersed boundary method,” Journal of Computational Physics, Vol. 153, pp. 509-534 (1999).
16.Peskin, C. S., “Flow patterns around heart valves: a digital computer method for solving the equations of motion,” Ph.D. Dissertation, Department of Physiology, Albert Einstein College of Medicine, University Microfilms, Vol. 378, pp. 72–30 (1972).
17.Peskin, C. S., “The fluid dynamics of heart valves: experimental, theoretical and computational methods,” Annu. Rev. Fluid Mech., Vol. 14, pp. 235–59 (1981).
18.Lai, M. C., and Peskin, C. S., “An immersed boundary method with formal second-order accuracy and reduced numerical viscosity,” Journal of Computational Physics, Vol. 160, pp. 705–19 (2000).
19.Clarke, D., Salas, M., and Hassan, H., “Euler calculations for multi-element airfoils using Cartesian grids,” AIAA J., Vol. 24, pp. 1128–35 (1986).
20.Udaykumar, H. S., Shyy, W., and Rao, M. M., “Elafint: A mixed Eulerian-Lagrangian method for fluid flows with complex and moving boundaries,” Int. J. Numer. Methods Fluids, Vol. 22, pp. 691–705 (1996).
21.Ye, T., Mittal, R., Udaykumar, H. S., and Shyy, W., “An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundaries,” Journal of Computational Physics, Vol. 156, pp. 209–40 (1999).
22.Angot, P., Bruneau, C. H., and Frabrie, P., “Apenalization method to take into account obstacles in viscous flows,” Numer. Math., Vol. 81, pp. 497–520 (1999).
23.Khadra, K., Angot, P., Parneix, S., and Caltagirone, J. P., “Fictitious domain approach for numerical modeling of Navier-Stokes equations,” Int. J. Numer. Methods Fluids, Vol. 34, pp. 651–84 (2000).
24.Ravoux, J. F., Nadim, A., and Haj-Hariri, H., “An Embedding Method for Bluff Body Flows: Interactions of Two Side-by-Side Cylinder Wakes,” Theoretical and Computational Fluid Dynamics, Vol. 16, pp. 433–466 (2003).
25.Ghia, U., Ghia, K.N., and Shin, C.T., “High-Re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method,” Journal of Computational Physics, Vol. 48, pp. 387-411 (1982).
26.Chen, J. H., Pritchard, W. G., and Tavener, S. J., “Bifurcation for flow past a cylinder between parallel planes,” Journal of Fluid Mechanics, Vol. 284, pp. 23-52 (1995).
27.Mittal, R., and Balachandar, S., “Direct Numerical Simulation of Flow Past Elliptic Cylinders,” Journal of Computational Physics, Vol. 124, pp. 351-367 (1996).
28.Strykowski, B. J., and Sreenivasan, K. R., “On the formation and suppression of vortex ‘shedding’ at low Reynolds numbers,” Journal of Fluid Mechanics, Vol. 218, pp. 71-107 (1990).
29.Sakamoto, H., Tan, K., and Haniu, H., “An optimum suppression of fluid forces by controlling a shear layer separated from a square prism,” Journal of Fluids Enggineering, Vol. 113, pp. 183-9 (1991).
30.Sakamoto, H., and Haniu, H., “Optimum suppression of fluid forces acting on a circular cylinder,” Journal of Fluids Enggineering, Vol. 116, pp. 221-7 (1994).
31.Dalton, C., Xu, Y., and Owen, J. C., “The Suppression of lift on a circular cylinder due to vortex shedding at moderate Reynolds numbers,” Journal of Fluids Structures, Vol. 15, pp. 61-28 (2001).
32.Zhao, M., Cheng, L., Teng, B., and Liang, D., “Numerical simulation of viscous flow past two circular cylinders of different diameters,” Applied Ocean Research, Vol. 27, pp. 39-55 (2005).
33.Delaunay, Y., and Kaiktsis, L., “Control of circular cylinder wakes using base mass transpiration,” Physics and Fluids, Vol. 13, pp. 3285-302 (2001).
34.Young, D. L., Huang, J. L., and Eldho, T. I., “Simulation of laminar vortex shedding flow past cylinders using a coupled BEM and FEM model,” Computer Methods in Applied Mechanics Engineering, Vol. 190, pp. 5975-98 (2001).
35.Wannier, G.H., “A contribution to the hydrodynamics of lubrication,” Quarterly of Applied Mathematics, Vol. 8, No. 1 (1950).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top