跳到主要內容

臺灣博碩士論文加值系統

(34.204.198.73) 您好!臺灣時間:2024/07/16 17:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭雅芬
研究生(外文):Ya-Fen Cheng
論文名稱:基於局部特徵子的圖像商標檢索系統
論文名稱(外文):Figurative Trademark Retrieval System based on Local Descriptors
指導教授:劉震昌
指導教授(外文):Jen-Chang Liu
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:66
中文關鍵詞:商標局部特徵子影像搜尋
外文關鍵詞:TrademarkLocal DescriptorsImage Search
相關次數:
  • 被引用被引用:1
  • 點閱點閱:437
  • 評分評分:
  • 下載下載:29
  • 收藏至我的研究室書目清單書目收藏:1
隨著科技不斷的發展、電腦與網路應用的快速普及化,眾多問題的解答,皆可利用強而有力的文字搜尋引擎,目前對於以文字進行檢索資料,已可達到精確的程度,例如:Google搜尋引擎。但隨著具照相功能的手機及數位相機等相關產品的普及化,存在於網頁或其他媒體上的龐大影像資訊不斷的增加,文字已無法詮釋某些影像的概念和意境,因此「以圖找圖」的影像搜尋系統因應而生。
本論文主要研究為圖像商標檢索。在當今全球化經濟中智慧財產權 (Intellectual Property Right, IPR) 已日益重要,為了保護商標所有人的權益,搜尋 (Search) 和監看 (Watch) 是否有仿冒或盜用圖像商標的情況具有重要的應用價值。我們利用三種影像局部特徵子作為特徵擷取與比對的方式,分別為SIFT、PCA-SIFT和SURF特徵,主要目的要找出對於圖像商標有最好效能的特徵子。商標資料庫中有著相當大量的影像,而影像中所包含的局部特徵子亦非常多,因此利用窮舉法搜尋相當費時,為了加快搜尋的速度,我們利用了字彙樹 (Vocabulary tree) 作為影像搜尋的方法,但是當速度變快時,相對的準確率也會降低,因此要在準確率與速度之間取得一個平衡。本論文分別利用改良的貪婪的N條最佳路徑搜索 (Greedy N-Best Paths Search) 和幾何校正 (Geometric Rectification) 提升準確率。在200張查詢影像以及台灣經濟部智慧財產局27,610張資料庫影像的實驗中,準確率可高達九成左右。
Attributing to the development of informational diversification, users can directly acquire a large number of information which is useful and surfed immediately from the browser. Nowadays, the technique of text retrieval has been developed more maturely, such as “Google search”. However, text-only search is not enough for the variety of resource from the internet, because there are more and more types of information in the world, such as video, audio and the combinations of them.
Nowadays, intellectual property right in the globalization economy has received much attention, and watch for infringed trademarks is one of the most important issues. This thesis focuses on figurative trademark search on the image database collected at the Ministry of Economic Affairs Intellectual Property Bureau, Taiwan. To search for similar trademarks using image content, we make use of three kinds of features including SIFT, PCA-SIFT and SURF for matching between the images. The first goal is to find out which feature is most suitable for the trademark database. Because of the large amount of features extracted from the images, the off-line training and on-line processing both spend a lot of time to finish. To improve the performance, we use the vocabulary tree for reducing the search time. While the search efficiency is improved, the search accuracy becomes slight poor. For this purpose, two modifications of the greedy N-best paths search and geometric rectification are used for reclaiming the accuracy. In the experiments, 200 images are used as queries for searching 27,610 images in database, and the accuracy of the performance can be up to 90% or so.
誌謝 I
論文摘要 II
Abstract III
目錄 IV
圖目錄 VI
表目錄 VIII
第一章、導論 1
1.1. 研究動機與目的 1
1.2. 文獻探討 5
1.2.1經濟部智慧財產局的商標檢索 5
1.2.2基於內容式的影像檢索 11
1.2.3特徵點描述 14
1.3. 系統簡介 15
1.3.1資料庫建立流程 15
1.3.2系統流程 16
1.3.3系統概述 17
1.4. 論文大綱 18
第二章、影像特徵擷取 19
2.1 SIFT特徵 19
2.2 PCA-SIFT特徵 24
2.3 SURF特徵 25
第三章、影像搜尋方法與重新排序 29
3.1 窮舉法 29
3.2 字彙樹 29
3.3 貪婪的N條最佳路徑搜索 31
3.4 利用幾何校正重新排序 37
第四章、建立資料索引方法 40
4.1 資料庫建立 40
4.2 反向索引 41
4.3 定義權重 43
第五章、影像相似度計算 44
5.1 相似度方法介紹 44
5.2 Count Match 44
5.3 Binary feature vector以及L1、L2距離 45
第六章、實驗與討論 47
6.1 實驗環境 47
6.2 評估方法 48
6.3 實驗結果 51
6.3.1實驗一:窮舉法 51
6.3.2實驗二:使用字彙樹減少搜尋空間 52
6.3.3實驗三:在字彙樹上使用貪婪的N條最佳路徑搜索 54
6.3.4實驗四:在字彙樹上使用幾何校正 57
第七章、總結與未來展望 61
7.1 總結 61
7.2 未來展望 61
參考文獻 63
[1]A. Berg and J. Malik, “Geometric Blur for Template Matching,” In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pages 607–614, 2001.
[2]A. Cerri, M. Ferri and D. Giorgi, “Retrieval of trademark images by means of size functions,” Graphical Models, vol. 68, no. 5-6, pp. 451-471, 2006.
[3]A. D. Bagdanov, L. Ballan, M. Bertini, and A. Del Bimbo, “Trademark catching and retrieval in sports video databases, ”In Proc. of ACM Multimedia Information Retrieval, Augsburg, Germany, 2007.
[4]A. Joly and O. Buisson, “Logo Retrieval with A Contrario Visual Query Expansion,” Proceedings of the seventeen ACM international conference on Multimedia, October 19-24, 2009.
[5]A. K. Jain, “Data Clustering: 50 Years Beyond K-Means,” Pattern Recognition Letters, Volume 31, pages 651-666, 01 June 2010.
[6]D. G. Lowe, “Object recognition from local scale-invariant features,” in Proceedings of the Seventh International Conference on Computer Vision, vol. 2, pp. 1150-1157, Sept. 1999.
[7]D. Nistér and H. Stewénius, “Scalable Recognition with a Vocabulary Tree,” Computer Vision and Pattern Recognition, Volume 2, pages 2161-2168, 2006.
[8]D. F. Shen, J. Li, H. T. Chang, and H. H. P. Wu, “Trademark retrieval based on block feature index code, ”Proceedings of IEEE International Conference on Image Processing 2005, vol. III, pp. 177-180, 2005.
[9]E. G. M. Petrakis, K. Kontis, and E. Voutsakis, “Relevance feedback methods for logo and trademark image retrieval on the Web,” Proceedings of the 2006 ACM Symposium on Applied Computing, pp. 1084-1088, 2006.
[10]G. Schindler, M. Brown, and R. Szeliski, “City-Scale Location Recognition,” In Conference on Computer Vision and Pattern Recognition, pp. 1-7, June 2007.
[11]H. Bay, T. Tuytelaars, and L. V. Gool, “SURF: Speeded Up Robust Features,” Proceedings of the ninth European Conference on Computer Vision, May 2006.
[12]H. Jiang, C. W. Ngo and H. K. Tan, “Gestalt-based feature similarity measure in trademark database,” Pattern Recognition, vol. 39, no. 5, pp. 988-1001, 2006.
[13]J. K. Wu, C. P. Lam, B. M. Mehtre, Y. J. Gao, and A. Narasimhalu, “Content-based retrieval for trademark registration,” Multimedia Tools Application, vol. 3, no. 3, pp. 245-267, 1996.
[14]J. P. Eakins, M. E. Graham, and J. M. Boardman, “Evaluation of a trademark image retrieval system,” Information Retrieval Research, the 19th Annual BCS-IRSG Colloquium on IR Research, 1997.
[15]J. R. Smith and S. F. Chang, “An Image and Video Search Engine for the World-wide-web,” In IS&T/SPIE Symposium on Electronic Imaging: Science and Technology (EI'97) - Storage and Retrieval for Image and Video Databases, 1997.
[16]J. Schietse, J. P. Eakins, and R. C. Veltkamp, “Practice and Challenges in Trademark Image Retrieval,” Proceedings of International Conference on Image and Video Retrieval, Pages 518-524, July 2007.
[17]K. Mikolajczyk, T. Tuytelaars, C. Schmid, A.Zisserman, J. Matas, F. Schaffalitzky, T. Kadir and L. Van Gool, “A Comparison of Affine Region Detectors,” Int. J. of Computer Vision Vol. 65, 1/2, pp. 43-72, 2005.
[18]L. Juan and O. Gwun, “A Comparison of SIFT, PCA-SIFT and SURF,” In International Journal of Image Processing, volume 3, pages 143–152, 2009.
[19]L. Zhu, A. Zhang, A. Rao and R. Srihari, “Keyblock: an approach for content-based image retrieval,” In Proc. ACM Multimedia, pages 157 - 166, 2000
[20]M. A. Fischler and R. C. Bolles, “Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography, ” Comm. of the ACM 24: 381–395, June 1981.
[21]M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani, J.Hafner, D. Lee, D. Petkovic, D. Steele, and P. Yanker, “Query by Image and Video Content the QBIC System,” In IEEE Computer, volume 28, issue 9, pages 23-32, 1995.
[22]M. H. Hung, C. H. Hsieh, and C. M. Kuo, “Similarity retrieval of shape images based on database classification,” Journal of Visual Communication & Image Representation, vol. 17, no.5, 970-985, 2006.
[23]M. Muja and D.G. Lowe, “Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration,” In VISSAPP, Volume 60, pages 331-340, 2009.
[24]R. Phan and D. Androutsos, “ Content-based Retrieval of Logo and Trademarks in Unconstrained Color Image Databases using Color Edge Gradient Co-occurrence Histograms,” Computer Vision and Image Understanding, ISSN: 10773142, Volume 114, Issue 1, Pages 66-84, January 2010.
[25]T. Kato, “Database architecture for content-based image retrieval,” Proceedings of SPIE Image Storage and Retrieval Systems, vol. 1662, pp. 112-123, 1992.
[26]Y. Ke, and R. Sukthankar, “PCA-SIFT: A More Distinctive Representation for Local Image Descriptors,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 511-517, 2004.
[27]Michael Lew, “Visual Information Retrieval – Future Directions and Grand Challenges,” ISBN:0302-9743,2007.
[28]R. Baeza-Yates and B. Ribeiro-Neto, “Modern Information Retrieval. ACM Press,” ISBN:020139829, 1999.
[29]van Rijsbergen, C.V.: Information Retrieval. London; Boston. Butterworth ISBN: 0-408-70929-4, 2nd Edition 1979.
[30]趙秉岐,「使用SIFT特徵之強健數位影像浮水印」,中興大學,資訊科學與工程學系所,民國97年。
[31]徐建業,「混合色彩空間以及區域紋理特徵之商標辨識系統」,國立中央大學,資訊工程研究所,民國97年。
[32]http://www.tvbs.com.tw/news/news_list.asp?no=suncomedy20050818130709
[33]http://www.rod.idv.tw/fastfood/burger0165.html
[34]http://tmsearch.tipo.gov.tw/TIPO_DR/index.jsp
[35]http://tmsearch.tipo.gov.tw/TIPO_DR/GoodsIPO.html
[36]http://tmsearch.tipo.gov.tw/TIPO_DR/QueryPathNum.html
[37]http://www.wipo.int/classifications/fulltext/vienna/enmain0.htm
[38]http://romip.ru/russir2008/slides/cbir/lecture-1.pdf
[39]http://www.csie.ntu.edu.tw/~cyy/courses/vfx/05spring/lectures/scribe/04scribe.pdf
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top